進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3006201920483300
論文名稱(中文) 透過調控Sb2Te3薄膜厚度觀察雙層異質結構的費米能階改變與其物理特性
論文名稱(英文) Observing the change of Fermi level and physical properties of double layers heterostructure by tuning thickness of Sb2Te3
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 107
學期 2
出版年 108
研究生(中文) 楊明憲
研究生(英文) Minh-Sien Yang
學號 L26064111
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-黃榮俊
口試委員-張泰榕
口試委員-林秉慧
中文關鍵字 分子束磊晶  異質結構  碲化鉍  碲化銻  PN junction 
英文關鍵字 topological insulator  P-N junction  hetetrostructure  Bi2Te3  Sb2Te3 
學科別分類
中文摘要 透過分子束磊晶系統,成長Sb2Te3與Bi2Te3在Sapphire (0001)晶軸方向的基板上。利用成長順序的方式,分別將兩拓樸絕緣體薄膜製作成上下異質結構,並藉由其載子傳輸特性的不同,觀察在異質結構接面處元素擴散的行為對物理特性的影響。
首先利用臨場高能量電子繞射儀(RHEED)在磊晶系統內確定薄膜品質,由X-ray Diffraction(XRD)確定薄膜成長的晶向,了解薄膜實為單晶材料;並且透過XRR的量測與分析,確定薄膜的厚度。原子尺度下的分析則透過原子力顯微鏡(AFM)了解雙層異質結構的表面形貌,以及穿透式電子顯微鏡(TEM)進行晶格結構下的量測與縱深的元素成分比例分析(EDX)。薄膜以光刻製程製作成Hall Bar元件,進行霍爾量測,藉以得知雙層異質結構的載子傳輸特性,如:載子濃度、片電阻。
最後藉由角解析光電子能譜儀(ARPES),分析在同步輻射光入射膜面後,所激發的表面光電子,了解薄膜中的能帶結構,並作以本研究透過不同載子特性的拓樸絕緣體薄膜製成異質結構會受雙層薄膜厚度所影響的直接證據。
為了瞭解異質結構接面處元素擴散的行為,我們透過HAXPES,得到此異質結構中各元素的軌域電子能譜,利用不同合金下的電子能量,進而得到接面處的鍵結差異。
最後透過物理性質量測系統(PPMS),對異質結構的雙極性特性進行分析,以得出上層厚度增加到接近PN轉換的參數時,將使得薄膜中Surface State在傳輸性質的貢獻逐漸上升,並以霍爾電阻與磁場大小為非線性關係吻合。
英文摘要 In this thesis, we grown Sb2Te3/Bi2Te3 heterostructure films on Sapphire substrate, the best growth condition are 250℃ for Sb2Te3, 320℃ for Bi2Te3. Under the increase of Sb2Te3 thickness, the surface morphology gradually transforms into island shape, and just when the thickness is 12nm/10nm, ARPES results show that Fermi level is near Dirac point. That is, it represents a reduction in the contribution of the bulk state in the transport properties, and electrons in the topological surface state are highly metallic.
The result of electrical measurement by PPMS is that the increase of Sb2Te3 thickness will change the conduction characteristics from n-type to p-type, and increase the surface state contribution while reducing the bulk state contribution.
論文目次 摘要…………………………………………………………………………………....I
致謝…………………………………………………………………………………...X
目錄………………………………………………………………………………….XI
表目錄……………………………………………………………………………..XIV
圖目錄………………………………………………………………………………XV
第一章. 緒論 1
1.1 介紹 1
1.1.1 拓樸絕緣體 1
1.1.2 雙層異質結構 4
1.2 文獻回顧 6
1.2.1 雙層異質結構的結構性與傳輸特性 6
1.2.2 雙層異質結構的電子結構與物理特性 11
1.3 研究動機 15
第二章. 實驗儀器與原理 16
2.1 分子束磊晶 16
2.1.1 MBE基本原理 17
2.1.2 The MBE system 18
2.2 薄膜品質基本檢測 27
2.2.1 X-ray Diffraction 27
2.2.2 原子力顯微鏡 29
2.2.3 掃描穿隧式電子顯微鏡 31
2.2.4 角分辨光電子能譜學 33
2.2.5 Hard X-ray Photoelectron Spectroscopy 35
2.3 電性分析 36
2.3.1 Hall effect measurement 36
2.3.2 物理性質量測系統(Physical Properties Measurement Systems) 39
第三章. 實驗製備流程 40
3.1 磊晶理論 40
3.1.1 磊晶行為模式 40
3.1.2 磊晶理論 42
3.2 樣品製備 43
3.2.1 薄膜成長 43
3.2.2 元件製作 44
第四章. 實驗結果與討論 46
PART I. 單層SB2TE3與BI2TE3 47
4.1 成長溫度對BI2TE3在AL2O3 (0001)之影響 47
4.1.1 AFM與RHEED量測結果分析 47
4.1.2 XRD量測結果分析 49
4.2 成長溫度對SB2TE3在AL2O3 (0001)之影響 52
4.2.1 AFM與RHEED量測結果分析 52
4.2.2 XRD量測結果分析 54
PART II. 異質結構 57
4.3 SB2TE3/BI2TE3異質結構 57
4.3.1 AFM與RHEED結果分析 58
4.3.2 XRD量測結果與分析 63
4.3.3 TEM結果與分析 64
4.3.4 ARPES結果與分析 67
4.3.5 HAXPES結果與分析 70
4.4 載子傳輸行為特性 71
4.4.1 霍爾量測 71
4.4.2 物理性質量測系統(PPMS) 74
第五章. 結論 78
第六章. 參考文獻 79
參考文獻 [1] 陳品卉, "單晶碲化鉍/硒化鉍拓樸絕緣體多層膜之磊晶成長及結構研究," 2013.
[2] 董弈, "調控多元鉍化硒合金拓樸絕緣體其電子結構, 傳輸及磁性研究," 2017.
[3] J.-C. Huang, "Studies of Nucleation, Coherent Tilt and Surface Phase Transitions by Molecular Beam Epitaxy," 1992.
[4] J. C. A. Huang, "PhD. Thesis," University of Illionis, 1992.
[5] A. Takayama, High-Resolution Spin-Resolved Photoemission Spectrometer and the Rashba Effect in Bismuth Thin Films. Springer, 2014.
[6] R. A. Wilson and H. A. Bullen, "Introduction to Scanning Probe Microscopy (SPM): Basic Theory Atomic Force Microscopy (AFM)," Creative Commons Attribution-Noncommercial-Share Alike, vol. 2, 2006.
[7] Y. Ando, "Topological insulator materials," Journal of the Physical Society of Japan, vol. 82, no. 10, p. 102001, 2013.
[8] R. Gutzler, W. M. Heckl, and M. Lackinger, "Combination of a Knudsen effusion cell with a quartz crystal microbalance: In situ measurement of molecular evaporation rates with a fully functional deposition source," Review of Scientific Instruments, vol. 81, no. 1, p. 015108, 2010.
[9] M. Eschbach et al., "Realization of a vertical topological p–n junction in epitaxial Sb 2 Te 3/Bi 2 Te 3 heterostructures," Nature communications, vol. 6, p. 8816, 2015.
[10] 鐘豪, "制動輻射," 科學 Online, 2016.
[11] M. Lanius et al., "P–N junctions in ultrathin topological insulator Sb2Te3/Bi2Te3 heterostructures grown by molecular beam epitaxy," Crystal Growth & Design, vol. 16, no. 4, pp. 2057-2061, 2016.
[12] C. L. Kane and E. J. Mele, "Quantum spin Hall effect in graphene," Physical review letters, vol. 95, no. 22, p. 226801, 2005.
[13] 王律堯, "自旋霍爾效應之簡介 " 台灣磁性技術協會, 2009.
[14] J. E. Moore and L. Balents, "Topological invariants of time-reversal-invariant band structures," Physical Review B, vol. 75, no. 12, p. 121306, 2007.
[15] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, "Quantum spin Hall effect and topological phase transition in HgTe quantum wells," Science, vol. 314, no. 5806, pp. 1757-1761, 2006.
[16] M. König et al., "Quantum spin Hall insulator state in HgTe quantum wells," Science, vol. 318, no. 5851, pp. 766-770, 2007.
[17] D. Hsieh et al., "A tunable topological insulator in the spin helical Dirac transport regime," Nature, vol. 460, p. 1101, 07/20/online 2009.
[18] C. Jozwiak et al., "Widespread spin polarization effects in photoemission from topological insulators," Physical Review B, vol. 84, no. 16, p. 165113, 2011.
[19] M. Takashiri, S. Kai, K. Wada, S. Takasugi, and K. Tomita, "Role of stirring assist during solvothermal synthesis for preparing single-crystal bismuth telluride hexagonal nanoplates," Materials Chemistry and Physics, vol. 173, pp. 213-218, 2016.
[20] X. Zhang et al., "Investigation on the electrical transport properties of highly (00l)-textured Sb2Te3 films deposited by molecular beam epitaxy," Journal of Applied Physics, vol. 115, no. 2, p. 024307, 2014.
[21] G. Wang et al., "Atomically smooth ultrathin films of topological insulator Sb 2 Te 3," Nano Research, vol. 3, no. 12, pp. 874-880, 2010.
[22] X. Chen, X. C. Ma, K. He, J. F. Jia, and Q. K. Xue, "Molecular beam epitaxial growth of topological insulators," Advanced Materials, vol. 23, no. 9, pp. 1162-1165, 2011.
[23] P.-Y. Chuang et al., "Anti-site defect effect on the electronic structure of a Bi 2 Te 3 topological insulator," RSC Advances, vol. 8, no. 1, pp. 423-428, 2018.
[24] B. Seradjeh, J. Moore, and M. Franz, "Exciton condensation and charge fractionalization in a topological insulator film," Physical review letters, vol. 103, no. 6, p. 066402, 2009.
[25] Z. Zhang et al., "Transport properties of Sb2Te3/Bi2Te3 topological insulator heterostructures," physica status solidi (RRL)–Rapid Research Letters, vol. 7, no. 1‐2, pp. 142-144, 2013.
[26] M. A. Herman and H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status. Springer Berlin Heidelberg, 2012.
[27] 洪連輝, "穿透式電子顯微鏡," 科學 Online, 2009.
[28] P.-Y. Chuang, "以角解析光電子能譜術探討新穎拓樸材料晶體與電子結構之物理特性," 成功大學物理學系學位論文, pp. 1-96, 2018.
[29] E. Hall, "On a new action of the magnet on electric currents," American Journal of Science, no. 111, pp. 200-205, 1880.
[30] 林冠廷, "拓樸絕緣體碲化銻/碲化鉍的 pn 接面磊晶成長與研究," 2018.
[31] S. Harrison, S. Li, Y. Huo, B. Zhou, Y. Chen, and J. Harris, "Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy," Applied Physics Letters, vol. 102, no. 17, p. 171906, 2013.
[32] R. Sultana, G. Gurjar, P. Neha, S. Patnaik, and V. Awana, "Hikami-Larkin-Nagaoka (HLN) Treatment of the Magneto-Conductivity of Bi 2 Te 3 Topological Insulator," Journal of Superconductivity and Novel Magnetism, vol. 31, no. 8, pp. 2287-2290, 2018.
[33] S. Hikami, A. I. Larkin, and Y. Nagaoka, "Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System," Progress of Theoretical Physics, vol. 63, no. 2, pp. 707-710, 1980.
[34] S.-P. Chiu and J.-J. Lin, "Weak antilocalization in topological insulator Bi 2 Te 3 microflakes," Physical Review B, vol. 87, no. 3, p. 035122, 2013.
[35] Y. Satake, J. Shiogai, K. Fujiwara, and A. Tsukazaki, "Effect of the depletion region in topological insulator heterostructures for ambipolar field-effect transistors," Physical Review B, vol. 98, no. 12, p. 125415, 2018.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw