進階搜尋


下載電子全文  
系統識別號 U0026-3006201613354100
論文名稱(中文) 無機CuSCN電洞傳輸層應用在混合式奈米氧化鋅紫外光感測器之研究
論文名稱(英文) A study of an inorganic CuSCN hole-transport layer in a ZnO nanocomposite ultraviolet photodetector
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 104
學期 2
出版年 105
研究生(中文) 黃仕穎
研究生(英文) Shih-Ying Huang
學號 Q16031291
學位類別 碩士
語文別 中文
論文頁數 113頁
口試委員 指導教授-彭洞清
指導教授-方炎坤
口試委員-朱聖緣
口試委員-林大欽
口試委員-張連璧
中文關鍵字 紫外光  PVK  氧化鋅奈米粒子  光感測器  奈米混合材料 
英文關鍵字 Ultraviolet  PVK  ZnO nano-particle  photodetector  nanocomposite materials 
學科別分類
中文摘要 本論文主要探討利用電鍍沉積無機電洞傳輸層CuSCN薄膜在ITO玻璃基板上,作為電洞傳輸層,以取代有機電洞注入層PEDOT:PSS與寬能隙的TPD-Si2有機電洞傳輸層,並完成製作奈米混合式紫外光感測器。

首先,使用電鍍方法沉積無機電洞傳輸層CuSCN 及旋轉塗佈奈米混合式光感測層(PVK:ZnO NPs),接著使用熱蒸鍍沉積BCP電洞阻擋層與濺鍍沉積Al電極,完成奈米混合式光感測器。奈米混合式光感測層中同時含有P型的PVK有機材料及N型的氧化鋅奈米粒子。當元件操作在逆向偏壓下,光感測層之中的氧化鋅奈米粒子在照紫外光之後,產生之光生電洞會經由PVK與CuSCN傳輸至ITO電極。由於PVK與ZnO的能隙差距過大,使得氧化鋅奈米粒子中的光生電子無法傳輸出去,也就是說,光生電子會被捕捉在氧化鋅奈米粒子之中。當光生電子大量被捕捉時,會造成能帶偏移與彎曲,引發大量電洞從外部注入,因此,產生高密度的光電流。

本研究的奈米混合式光感測器,在照射360nm 波長24.9 μW/cm^2光源下,展現出166倍的暗電流與光電流比(dark/bright current ratio or the so-called on/off ratio)、 9.12×10^12 Jones的探測率及94倍的紫外光-可見光拒斥比,其表現優於一般無機半導體感測器。此外,本研究之紫外光感測器更具低成本、可繞性、輕巧等優點,因此有機會可以取代傳統的無機元件做為低成本高靈敏度的UV感測元件。
英文摘要 This thesis employed electroplating technique to deposit an inorganic CuSCN material to replace the conventional PEDOT:PSS and TPD-Si2 organic materials as a hole transport layer for applying to a novel nanocomposite photodetector. To fabricate the photodetector, the CuSCN hole transport layer was covered with a nanocomposite active layer followed by evaporating BCP as a hole block layer, and a sputtered aluminum film as the electrode. The active layer consists of a P-type organic PVK material and a N-type wide band-gap ZnO nanoparticles.

When the device under UV illumination and reverse biased condition, the ZnO nanoparticles in the active layer generate electron/hole pairs. The light-generated holes are transported from PVK and CuSCN to the ITO electrode. In the same time, the light-generated electrons are trapped in the ZnO nanoparticles due to lack of a percolation network and the strong quantum confinement effect of the PVK−ZnO NPs composite band structure. The trapped electrons in the ZnO nanocomposite will create a band bending of the polymer which results in a large amount of holes injecting into the device from the top Al contact, thus generates significant amount of additional photo current.

The fabricated photodetector can generate a photocurrent of more than two orders of magnitude higher than that of the dark current under a 360 nm 24.9 μW/cm^2 UV illumination, a high UV to visible rejection ratio of 94 times, and high detectivity of 9.12×10^12 Jones. The device’s performance is better than typical conventional inorganic photodetectors. Besides, the nanocomposite device possesses the advantages of flexibility, light weight and lower cost to manufacture. Therefore, the studied UV detector has a great potential to replace the conventional inorganic one for low cost and high performance UV detecting applications.
論文目次 中文摘要 I
Abstract III
誌謝 IX
目錄 XI
表目錄 XVI
圖目錄 XVII
第一章 導論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 材料特性 6
1.3.1 硫氰酸亞銅 (CuSCN) 特性 6
1.3.2 氧化鋅特性 8
1.3.3 Poly-(N-vinylcarbazole) (PVK)特性 11
1.3.4 BCP特性 12
1.4 論文架構 13
第二章 基礎理論 14
2.1 光感測器與參數介紹 14
2.1.1 光感測器 14
2.1.1.1 光響應度 (Responsivity) 14
2.1.2 光檢測器參數 15
2.1.2.1 探測率 (Detectivity) 15
2.1.2.2 響應速度 (Response speed) 15
2.2 元件基礎理論 16
2.2.1 金屬半導體接面 16
2.2.2 PN半導體接面 18
2.3 半導體光感測器 22
2.3.1 操作原理 22
2.3.2 光二極體光感測器 22
2.3.3 有機半導體光檢測器 23
2.3.4 光導體光感測器 23
第三章 實驗與量測儀器和製程步驟 25
3.1 實驗材料 25
3.2 感測器製程設備系統 27
3.2.1 化學電鍍沉積系統 27
3.2.1.1 電鍍基本裝置及電鍍系統 28
3.2.1.2 電鍍基本原理 30
3.2.1.3 循環伏安法 31
3.2.1.4 定電位電解法 32
3.2.1.5 定電流電解法 33
3.2.1.6 法拉第電解定律 33
3.2.2 離心機 34
3.2.3 旋轉塗佈機 36
3.2.4 高溫石英爐管 37
3.2.5 真空熱蒸鍍鍍系統 39
3.2.6 真空濺鍍系統 42
3.2.6.1 射頻磁控濺鍍系統 42
3.2.6.2 射頻濺射 44
3.2.6.3 反射性濺射 46
3.2.6.4 磁控濺鍍理論 47
3.3 薄膜分析量測儀器 50
3.3.1 高解析掃描式電子顯微鏡 50
3.3.2 X 光繞射儀 (XRD) 54
3.3.3 紫外光/可見光光譜儀 58
3.3.4 薄膜測厚儀(α-step) 59
3.3.5 B1500A半導體元件參數分析儀 60
3.4 製程步驟與成長參數 62
3.4.1 氧化鋅奈米粒子的合成 64
3.4.2 氧化銦錫玻璃基板(ITO Glass)清洗流程 64
3.4.3 電鍍沉積CuSCN薄膜 65
3.4.4 旋轉塗佈奈米複合光感測層 65
3.4.5 蒸鍍沉積BCP電洞阻擋層 66
3.4.6 濺鍍沉積鋁電極 66
第四章 結果與討論 67
4.1 光感測器的工作機制 67
4.2 氧化鋅與CuSCN材料分析 70
4.2.1 X光繞射儀分析 70
4.2.1.1 氧化鋅 X光繞射分析 70
4.2.1.2 CuSCN X光繞射分析 71
4.3 CuSCN薄膜沉積分析 72
4.3.1 CuSCN薄膜配方調變 72
4.3.2 CuSCN電洞傳輸層厚度分析 82
4.4 奈米複合薄膜沉積分析 85
4.5 光感測層電子捕捉驗證 89
4.6 光感測器電性分析 91
4.6.1 CuSCN沉積厚度之電性分析 91
4.6.2 CuSCN電鍍液濃度之電性分析 93
4.6.3 二極體特性與感測器光電流 95
4.7 響應度與探測率 97
4.7.1 響應速度(Response Speed) 97
4.7.2 光響應度(Responsivity) 99
4.7.3 探測率(Detectivity) 101
4.8 文獻比較 103
4.9 可靠度考量 105
第五章 結論與未來展望 106
5.1 結論 106
5.2 未來展望 106
參考文獻 107
參考文獻 [1] Masako Sasaki, Shu Takeshita, Masahisa Sugiura, Noriko Sudo, Yukiharu Miyake, Yoshiya Furusawa, and Toshibumi Sakata. “Ground-Based Observation of Biologically Active Solar Ultraviolet-B Irradiance at 35. DEG. N Latitude in Japan” Journal of Geomagnetism and Geoelectricity 45.6, 473-485 (1993).
[2] Takayoshi Oshima, Takeya Okuno, Naoki Arai,Norihito Suzuki, Harumichi Hino, and Shizuo Fujita, “Flame Detection by a β-Ga2O3-Based Sensor” Japanese Journal of Applied Physics 48, 011605 (2009).
[3] E. V. Gorokhov, A. N. Magunov, V. S. Feshchenko, and A. A. Altukhov, “Solar-blind UV flame detector based on natural diamond” Instruments and Experimental Techniques vol. 51 No. 2, 280 (2008).
[4] Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, “Demonstration of Flame Detection in Room Light Background by So-lar-Blind AlGaN PIN Photodiode Phys. Stat.Sol. (a) 188, 293 (2001).
[5] A. S. Pawbake, V. S. Waman, R. G. Waykar, A. H. Mayabadi, R. R Kulkarni, “Synthesis of Nanocrystalline Silicon Carbide Thin Films by HW-CVD Us-ing Ethane Carbon Precursor for Photo Detector Application” IEEE 88-93 (2015).
[6] Torres, A. Tanskanen, B. Veihelmann, C.W. Ahn, R. Braak, P.K. Bhartia, P.Veefkind, and P. Levelt, J. Geophysical, “Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview” Research 112, D24S47 (2007).
[7] Jin, Y. Z., Wang, J. P., Sun, B. Q., Blakesley, J. C. & Greenham, N. C., “So-lution processed ultraviolet photodetedtors based on colloidal ZnO nanopar-ticles” Nano Lett. 8, 1649–1653 (2008).
[8] Gruber, G., Moses, W., Derenzo, S., Wang, N., Beuville, E. & Ho, H., “A discrete scintillation camera module using silicon photodiode readout of CsI (TI) crystals for breast cancer imaging” Nuclear Science, IEEE Transactions on 45, 1063-1068 (1998).
[9] Park, H., Kuo, Y.-h., Fang, A. W., Jones, R., Cohen, O., Paniccia, M. J. &Bowers, J. E., “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector” Optics Express 15, 13539-13546 (2007).
[10] Dolgoshein, B., Balagura, V., Buzhan, P., Danilov, M., Filatov, L. et al. “Status report on silicon photomultiplier development and its applications” Nuclear Instruments and Methods in Physics Research Section A: Accelera-tors, Spectrometers, Detectors and Associated Equipment 563, 368-376 (2006).
[11] Emmons, R. Avalanche‐Photodiode Frequency Response. Journal of applied physics 38, 3705-3714 (2004).
[12] Liu, J.-M. Photonic Devices. 966-986 (Cambridge University Press, 2005).
[13] Sabina M. Hatch, Joe Briscoe, and Steve Dunn, “A Self-Powered ZnO-Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response” Adv. Mater. 25, 867 (2013).
[14] Do Young Kim, Jiho Ryu, Jesse Manders, Jaewoong Lee, and Franky So, “Air-Stable, Solution-Processed Oxide p–n Heterojunction Ultraviolet Pho-todetector” ACS applied materials & interfaces, 1370-1374 (2014).
[15] Mehdi Mohamadzade Lajvardi, a, Faramarz Hossein-Babaei,Farhad Akbari Boroumand, “Silver-Rutile UV Sensor Fabricated on Thermally Oxidized Titanium Foil” Engineering Materials Vol. 495, 18 (2012).
[16] Hao Chen, Linfeng Hu, Xiaosheng Fang, and Limin Wu., “General Fabrica-tion of Monolayer SnO2 Nanonets for High ‐ Performance Ultraviolet Photodetectors” Advanced Functional Materials 22.6 1229-1235 (2012).
[17] Xiaosheng Fang, Tianyou Zhai, Ujjal K. Gautam, Liang Li,Limin Wua, Yo-shio Bando, Dmitri Golberg, “ZnS nanostructures: From synthesis to appli-cations” Progress in Materials Science 56, 175 (2011).
[18] Xiaosheng Fang, Linfeng Hu, Kaifu Huo, Biao Gao , Lijuan Zhao , Meiyong Liao ,Paul K. Chu , Yoshio Bando , and Dmitri Golberg, “New Ultraviolet Photodetector Based on Individual Nb2O5 Nanobelts” Adv. Funct. Mater. 21, 3907 (2011).
[19] Suo Bai , Weiwei Wu , Yong Qin , Nuanyang Cui , Dylan J. Bayerl , and Xudong Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates” Adv. Funct. Mater. 21, 4464 (2011).
[20] Yoshihiro Kokubun, Kasumi Miura, Fumie Endo, and Shinji Nakagomi., “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors” Applied Physics Letters 90.3, 031912 (2007).
[21] L. Wang, D. Zhao, Z. Su, F. Fang, B. Li, Z. Zhang, D. Shen, X. Wang, “High spectrum selectivity organic/inorganic hybrid visible-blind ultraviolet pho-todetector based on ZnO nanorods” Organic Electronics 11, 1318 (2010).
[22] McDonald, S. A., Konstantatos, G., Zhang, S., Cyr, P. W., Klem, E. J., Lev-ina,L. & Sargent, E. H., “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics” Nature Materials 4, 138-142 (2005).
[23] Lin, H. W., Ku, S. Y., Su, H. C., Huang, C. W., Lin, Y. T., Wong, K. T. & Wu, C. C., “Highly Efficient Visible‐Blind Organic Ultraviolet Photodetectors” Advanced Materials 17, 2489-2493 (2005).
[24] Ray, D. & Narasimhan, K., “High response organic visible-blind ultraviolet detector” Applied Physics Letters 91, 093516 (2007).
[25] Peumans, P., Yakimov, A. & Forrest, S. R., “Small molecular weight organic thin-film photodetectors and solar cells” Journal of Applied Physics 93, 3693-3723 (2003).
[26] Katz, H., Lovinger, A., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A., “A soluble and air-stable organic semiconductor with high electron mobility” Nature 404, 478-481 (2000).
[27] Hill, I., Rajagopal, A., Kahn, A. & Hu, Y., “Molecular level alignment at or-ganic semiconductor-metal interfaces” Applied Physics Letters 73, 662-664 (1998).
[28] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi and J. Huang, “A nano-composite ultraviolet photodetector based on interfacial trap-controlled charge injection” Nature Nanotech. 7, 798 (2012).
[29] Yanjun Fang , Fawen Guo , Zhengguo Xiao , and Jinsong Huang, “Large Gain, Low Noise Nanocomposite Ultraviolet Photodetectors with a Linear Dynamic Range of 120 dB” Adv. Optical Mater., 348–353 (2014).
[30] Rui Dong , Cheng Bi , Qingfeng Dong , Fawen Guo , Yongbo Yuan , Yanjun Fang , Zhengguo Xiao , and Jinsong Huang, “An Ultraviolet-to-NIR Broad Spectral Nanocomposite Photodetector with Gain” Adv. Optical Mater., 549–554 (2014).
[31] Liang Shen, Yanjun Fang, Qingfeng Dong, Zhengguo Xiao, and Jinsong Huang, “Improving the sensitivity of a near-infrared nanocomposite photo-detector by enhancing trap induced hole injection” Applied Physics Letters 106, 023301 (2015).
[32] Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., Seok, S., “Compositional engineering of perovskite materials for high-performance solar cells” II. Nature 517, 476−480 (2015).
[33] Chiang, C. H., Tseng, Z. L., Wu, C. G. J., “Planar heterojunction perov-skite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process” Mater. Chem. A, 15897−15903 (2014).
[34] Xiao, Z. G.; Bi, C., Shao, Y. C., Dong, Q. F., Wang, Q., Yuan, Y. B., Wang, C. G., Gao, Y. L., Huang, J. S., Energy Environ. Sci., 2619−2623 (2014).
[35] Christians, J. A., Fung, R. C. M. & Kamat, P. V., “An inorganic hole con-ductor for organo-lead halide perovskite solar cells. Improved hole conduc-tivity with copper iodide” J. Am. Chem. Soc. 136, 758–764 (2014).
[36] Qin, P.; Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., Nazee-ruddin, M. K., Grätzel, M., “Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency” Nat. Commun. 3834−3840 (2014).
[37] Senyun Ye, Weihai Sun, Yunlong Li, Weibo Yan, Haitao Peng, Zuqiang Bian, Zhiwei Liu, and Chunhui Huang. “CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%” ACS Nano Letters 15, 3723−3728 (2015).
[38] O’Regan, B., Schwartz, D. T., Zakeeruddin, S. M. & Gra¨tzel, M., “Electro-deposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics” Adv. Mater. 12, 1263–1267 (2000).
[39] Ito, S., Tsujimoto, K., Nguyen, D. C., Manabe, K., & Nishino, H. “Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency” J. Phys. Chem. C 116, 13465–13471 (2012).
[40] Pattanasattayavong, P. et al., “Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper (I) thiocyanate (CuSCN) processed from solution” Adv. Mater. 25, 1504–1509 (2013).
[41] Pattansattayavong, P. et al., “Electric ield-induced hole transport in copper (I) thiocyaniate (CuSCN) thin-films processed from solution at room tempera-ture” Chem. Commun. 49, 4154–4156 (2013).
[42] Pichaya Pattanasattayavong, Guy Olivier Ngongang Ndjawa, Kui Zhao, Kang Wei Chou, Nir Yaacobi-Gross, Brian C. O’Regan, Aram Amassian and Thomas D. Anthopoulos, “Electric field-induced hole transport in cop-per(I)thiocyanate (CuSCN) thin-films processed from solution at room tem-perature” The Royal Society of Chemistry 49, 4154-4156 (2013).
[43] Gan, X., Liu, K., Du, X., Guo, L., & Liu, H., “Bath temperature and deposi-tion potential dependences of CuSCN nanorod arrays prepared by electro-chemical deposition” Journal of Materials Science 50.24, 7866-7874 (2015).
[44] Kathy J. Chen, Ad`ele D. Laurent, Florent Boucher, Fabrice Odobel and Denis Jacquemin, “Determining the most promising anchors for CuSCN: ab initio insights towards p-type DSSCs” J. Mater. Chem, 2217–2227 (2016).
[45] Chappaz-Gillot, C., Salazar, R., Berson, S., & Ivanova, V., “Room tempera-ture template-free electrodeposition of CuSCN nanowires” Electrochemistry Communications 24, 1-4 (2012).
[46] Chappaz-Gillot, C., Salazar, R., Berson, S., & Ivanova, V., “Insights into CuSCN nanowire electrodeposition on flexible substrates” Electrochimica Acta 110, 375-381 (2013).
[47] Mebarki, Bencherki, et al., “Polycrystalline silicon film formation at low temperature using ultra-high-frequency plasma enhanced chemical vapor deposition” Materials Letters 41.1, 16-19 (1999).
[48] Igasaki, Yasuhiro, and Hiromi Saito., “The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by rf reactive sputtering” Thin Solid Films 199.2, 223-230 (1991)
[49] Cao, Bingqiang, and Weiping Cai., “From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions.” The Journal of Physical Chemistry C 112.3, 680-685 (2008).
[50] Soci, Cesare, et al., “ZnO nanowire UV photodetectors with high internal gain” Nano Letters, 7(4), 1003-1009 (2007).
[51] Du, G. T., et al., “Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis” Applied Physics Letters 89.5, 052113 (2006).
[52] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, and T. Sakurai., “Thin film deposition of Cu2O and application for solar cells” Solar Energy, 80.6, 715-722 (2006).
[53] J. C Bernede, H. Derouiche, and V. Djara., “Organic photovoltaic devices: influence of the cell configuration on its performences” Solar Energy Mate-rials and Solar Cells, 87., 1261-270 (2005).
[54] Wang, L., Liang, B., Huang, F., Peng, J., & Cao, Y., “Wang, Lei, et al. "Uti-lization of water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of high-efficiency multilayer saturated red-phosphorescence polymer light-emitting diodes by solution processing” Applied Physics Let-ters 89.15, 1115 (2006).
[55] Yu, Wenge, et al., “Blue electroluminescence of ZnSe thin film in an organic–inorganic heterostructures device.” Physics Letters A 338.3 402-406 (2005).
[56] YS Lai, CH Tu, DL Kwong, and JS Chen., “Charge-transport characteristics in bistable resistive poly (N-vinylcarbazole) films.” Electron Device Letters, IEEE, 27.6 451-453 (2006).
[57] S. Ben Dkhila, J. Davenasb, R. Bourguigaa, and D. Cornuc., “Effect of thermal treatments on the properties of PVK/silicon nanowires films for hy-brid solar cells” Synthetic Metals, 161.17 1928-1933 (2011).
[58] Xiong Gong, Minghong Tong, Yangjun Xia, Wanzhu Cai, Ji Sun Moon, Yong Cao, Gang Yu, Chan-Long Shieh, Boo Nilsson, and Alan J. Heeger., “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm” Science, 1665-1667 (2009).
[59] Naka, S., Okada, H., Onnagawa, H., & Tsutsui, T., “High electron mobility in bathophenanthroline” Applied Physics Letters 76.2, 197-199 (2000).
[60] 陳金鑫、黃孝文,OLED夢幻顯示器,OLED材料與元件,五南圖書出版公司,2007年。
[61] 施敏,半導體物理與製作技術,國立交通大學出版社,2010年。
[62] Kasap, S. O. "Photovoltaic devices.”Optoelectronics and photonics: Principles and practices” 254-272 (2001).
[63] 尤光先,電鍍工程學,徐氏基金會出版, 1976年。
[64] 賴耿陽,實用電鍍技術全集,復漢出版社, 1981年。
[65] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering” Journal of Applied Physical 46, 3381 (1975).
[66] 王福貞,聞立時,“表面沉積技術”,機械工業出版社,pp.114-204,1989年。
[67] 陳力俊等編著,材料電子顯微鏡學,儀科中心出版,1994年。
[68] 許樹恩,吳泰伯,X光繞射原理與材料結構分析,民全書局,1996年。
[69] Oosterhout, S. D., Wienk, M. M., van Bavel, S. S., Thiedmann, R., Koster, L. J.A., Gilot, J., Loos, J., Schmidt, V. & Janssen, R. A. J. “The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells” Nature Materials 8, 818-824 (2009).
[70] Sun, B. Q., Marx, E. & Greenham, N. C. “Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers” Nano Letters 3, 961-963 (2003).
[71] Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. “Hybrid nanorod-polymer solar cells” Science 295, 2425-2427 (2002).
[72] Liu, J., Qu, S., Zeng, X., Xu, Y., Gou, X., Wang, Z., Zhou, H. & Wang, Z. “Fabrication of ZnO and its enhancement of charge injection and transport in hybrid organic/inorganic light emitting devices” Applied Surface Science 253, 7506-7509 (2007).
[73] Pacholski, C., Kornowski, A. & Weller, H. “Self-Assembly of ZnO: From Nanodots to Nanorods” Angewandte Chemie International Edition 41, 1188-1191 (2002).
[74] Sun, B. & Sirringhaus, H. “Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods” Nano Letters 5, 2408-2413 (2005).
[75] Cyril Chappaz-Gillot, Raul Salazar, Solenn Berson, Valentina Ivanova. “Insights into CuSCN nanowire electrodeposition on flexible substrates” Electrochim. Acta 110, 375−381 (2013)
[76] Cyril Chappaz-Gillot, Raul Salazar, Solenn Berson, Valentina Ivanova. “Room temperature template-free electrodeposition of CuSCN nanowires” Electrochem. Commun 24, 1-4 (2012)
[77] Li, G., Shrotriya, V., Huang, J. S., Yao, Y., Moriarty, T., Emery, K. & Yang, Y. “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends” Nature Materials 4, 864-868 (2005).
[78] Li, G., Shrotriya, V., Yao, Y., Huang, J. S. & Yang, Y. “Manipulating regioregular poly(3-hexylthiophene): 6,6 -phenyl-C-61-butyric acid methyl ester blends - route towards high efficiency polymer solar cells” Journal of Materials Chemistry 17, 3126-3140 (2007).
[79] Li, N., Li, X., Demiguel, S., Zheng, X., Campbell, J. C. et al. “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode” Photonics Technology Letters, IEEE 16, 864-866 (2004).
[80] Pernot, C., Hirano, A., Iwaya, M., Detchprohm, T., Amano, H. & Akasaki, I.” Solar-blind UV photodetectors based on GaN/AlGaN pin photodiodes.” Japanese Journal of Applied Physics 39, L387 (2000).
[81] de Luna Bugallo, A., Tchernycheva, M., Jacopin, G., Rigutti, L., Julien, F. H.,Chou, S.-T., Lin, Y.-T., Tseng, P.-H. & Tu, L.-W. “Visible-blind photodetector based on p–i–n junction GaN nanowire ensembles” Nanotechnology 21,315201 (2010).
[82] Carrano, J., Li, T., Grudowski, P., Eiting, C., Dupuis, R. & Campbell, J. “Comprehensive characterization of metal–semiconductor–metal ultraviolet
photodetectors fabricated on single-crystal GaN” Journal of Applied Physics 83, 6148-6160 (1998).
[83] Schuller, S., Schilinsky, P., Hauch, J. & Brabec, C. “Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements” Applied Physics A 79, 37-40 (2004).
[84] Carley, L. R. (Google Patents, 2006).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於0000-00-00起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw