進階搜尋


下載電子全文  
系統識別號 U0026-3006201017284800
論文名稱(中文) 金奈米粒子修飾之核殼奈米粒子的光學增強效應
論文名稱(英文) Optical Enhancement Effect of Gold Nanoparticle-modified Core Shells
校院名稱 成功大學
系所名稱(中) 光電科學與工程研究所
系所名稱(英)
學年度 98
學期 2
出版年 98
研究生(中文) 鄭鈺耀
研究生(英文) Yu-Yao Cheng
學號 l7697107
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 指導教授-崔祥辰
口試委員-李永春
口試委員-莊承鑫
口試委員-任春平
口試委員-陳南光
中文關鍵字 金奈米粒子  矽奈米粒子  金奈米粒子棒  自組合單分子層 
英文關鍵字 silica nanoparticle  SERS  self-assembled monolayers  gold nanoparticle  gold nanorod 
學科別分類
中文摘要 矽奈米粒子鍍不同厚度金殼和金奈米粒子鍍上一層矽殼,在表面增強拉曼散射、吸收光譜和穿透光譜上已被廣泛應用,本篇論文是利用自組合的方式製作複合奈米粒子,主要是用Silica去包覆住染料(羅丹寧),令染料成為核心,而矽球則成為外殼,整個粒子的直徑為600 nm左右,並在其表面上以濕化學法(自組合)鍍上不同形狀和大小的金奈米粒子,分別為奈米粒子球與奈米粒子棒,並且比較其吸收光譜在吸收波段上的改變和拉曼光譜上的增強效應,由於在粒子內部有染料的存在,且外部也有金奈米粒子,因此在粒子的表面電漿共振的形態上會與單純的矽奈米粒子有所不同,可造成額外的增強效果,並且探討其鍍上不同形狀與大小的金奈米粒子時表面電漿耦和現象,並且可將其應用在生醫相關實驗上,由於其吸收波段主要落在紅外線波段,因此使用在生物組織上時,相對傷害度較低,而較強的增強效果也能夠增加生醫量測時的靈敏度,提高其應用的廣泛度。
英文摘要 The silica nanoparticles coated different thickness of gold shell and gold nanoparticles coated silica shell have been extensively used in surface- enhanced Raman scattering (SERS), absorption spectroscopy, transmission spectroscopy, and their relative application . We mainly use silica to entrap the organic dyes, so the organic dyes can be the core and silica can be the shell, and then gold nanoparticles with different size and shape can be adhered onto silica shell to form complex nanoparticles by the method of self-assembled monolayers (SAM) in the thesis. The gold nanoparticles which we use are nanospheres with different size and nanorods separately, and we compare the different of absorption spectroscopy and surface-enhanced Raman scattering spectroscopy (SERS) with each other. The complex nanoparticles have the organic dyes inside the particle and have the gold nanoparticles on the surface of particle, so the surface plasmon resonance (SPR) state of our complex nanoparticles is different from the pure silica nanoparticle due to additional enhancement effect , hence we discuss its phenomenon of surface plasmon resonance. We can use the composite nanoparticles on biomedical experiment, and its damage is low due to the absorption wavelength of near-infrared. And its enhancement effect also can improve the sensitivity of biomedical assay and increase its application.
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
第一章 導論 1
1-1 奈米粒子的簡介 1
1-2 奈米材料的應用 2
1-3 研究的動機與目標 3
1-4 研究的主題與方法 5
第二章 實驗理論介紹 7
2-1 表面電漿 7
2-1-1 表面電漿共振 7
2-1-2 侷域性表面電漿共振 11
2-2 金屬奈米粒子的電漿共振效應 12
2-2-1 簡介 12
2-2-2 金屬粒子電漿共振效應 13
2-2-3 各種電漿共振效應 15
2-2-5 金屬奈米棒的簡介與電漿共振效應 17
2-3 拉曼頻譜儀 20
2-3-1 拉曼散射 21
2-3-2 表面增強式拉曼散射頻譜 23
第三章 製程步驟 26
3-1 有機染料(Rhodamine 6G)簡介 26
3-2 Dye-silica核殼奈米粒子的製作 27
3-3 自組合單分子層的準備 31
3-4 棒狀奈米粒子的製備 36
3-5 金奈米粒子(球狀與棒狀)的抓取 37
第四章 實驗結果與討論 45
4-1 紫外光/可見光吸收光譜儀 45
4-2 穿透光譜的量測與分析 46
4-3 微拉曼光譜儀 51
4-4 拉曼光譜的量測與分析 52
4-5 實驗結果討論 56
第五章 結論 58
5-1 結論 58
5-2 未來展望 58
參考文獻 60
參考文獻 [1] G. A. Lawrie, B. J. Battersby, and M. Trau, “Bioballs: manipulating colloidal nanostructures for biotechnology applications”, Appl. Nanosci. 1, 17 (2004).
[2] F. Caruso, “Nanoengineering of Particle Surfaces”, Adv. Mater. 13 11 (2001).
[3] P. Mulvaney, L. M. Liz-Marzan, M. Giersig, and T. Ung, “Silica Encapsulation of Quantum Dots and Metal Clusters”, J. Mater. Chem. 10 1259 (2000).
[4] L. M. Liz-Marza´n, M. Giersig, and P. Mulvaney, “Synthesis of Nanosized Gold-Silica Core-Shell Particles”, Langmuir, 12, 4329 (1996)
[5] Z. Deng, M. Chen, and L. Wu, “Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties”, J. Phys. Chem. C 111, 11692 (2007)
[6] 陳東煌, “複合奈米粒子-有趣的人造原子” , 2006年12月, 科學發展408期
[7] Thomas C. Preston and Ruth Signorell. , “Growth and Optical Properties of Gold Nanoshells Prior to the Formation of a Continuous Metallic Layer”, Acsnano 3, 3696-3706 (2009)
[8] C. Wang, Y. Chen, T. Wang, Z. Ma, and Z. Su, “Monodispersed gold nanorod-embedded silica particles as novel raman labels for biosensing”, Adv. Funct. Mater. 18, 355–361(2008)
[9] H. Raether, “Surface Plasmons”, Springer (1988).
[10] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons”, Phys. Reports 408, 131 (2005).
[11] R. F. Wallis and G. I. Stegeman, “Electromagnetic Surface Excitations”, Springer-Verlag (1985).
[12] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer-Verlag (1988).
[13] 田蔚城,”生物技術的發展與應用”,九州圖書(1997)
[14] J. Davies, “Surface analytical techniques for probing biomaterial processes”, CRC Press. Inc. (1996).
[15] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer-Verlag (1998).
[16] K.Matsubara, S.Kawata, and S.Minami, “A compact surface plasmon resonance sensor for measurement of water in process”, Appl. Spectros. 42, 1375 (1988)
[17] B. Liedberg, I. Lundstrom, and E. Stenberg ,“Principles of biosensing with an extended coupling matrix and surface plasmon resonance”, Sensors Actuator B.11,63 (1993)
[18] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review”, Sens. Actuators B 54, 3 (1999)
[19] Shu-Fang Cheng and Lai-Kwan Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing”, Anal. Chem. 75, 16 (2003)
[20] T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C Schatz, and R. P. Van Duyne ,“Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles”, J. Phys. Chem. B 103, 9846 (1999)
[21] A. C Templeton, J. J. Pietron, R. W. Murray, and P. J. Mulvaney ,”Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters”, Phys. Chem. B 104, 564 (2000)
[22] T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates”, Opt. Lett. 25, 372 (2000)
[23] N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface”, Anal. Chem. 74, 504 (2002)
[24] Xiangjiang Liu, Maria Knauer, Natalia P. Ivleva, Reinhard Niessner, and Christoph Haisch , “Synthesis of core-shell surface-enhanced raman tags for bioimaging”, Anal. Chem. 82, 441 (2010)
[25] R. P. Van Duyne, J. C. Hulteen, D. A. Treichel, and J. Chern ,“Atomic force microscopy and surface-enhanced raman spectroscopy: Ag island films and Ag film over polymer nanosphere surfaces supported on glass”, Phys. 99, 2101 (1993)
[26] P. F. Liao, and M. B. Stern ,“Surface-enhanced Raman scattering on gold and aluminum particle arrays”, Optics Letters 7, 483 (1982)
[27] C. F. Bohren and D. R. Huffman, “Absorption and scattering of light by small particles”, Wiley Interscience, New York (1983).
[28] K .L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shap, and dielectric environment”, J. Phys. Chem. B 107, 668 (2003)
[29] A. P. Alivisatos, “Perspectives on the Physical Chemistry of Semiconductor Nanocrystals”, J. Phys. Chem. 100, 13226 (1996)
[30] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science 271, 933(1996)
[31] B. Nikoobakht and M.A. El-Sayed ,”Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method”, Chem. Mater. 15, 1957 (2003)
[32] H. Cong, R. Toftegaard, J. Arnbjerg, and P.R. Ogilby ,“Silica-Coated Gold Nanorods with a Gold Overcoat: Controlling Optical Properties by Controlling the Dimensions of a Gold-Silica-Gold Layered Nanoparticle”, Langmuir 26, 4188 (2010)
[33] M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes”, Acc. Chem. Research, 34, 257 (2001)
[34] Y.Y. Yu, S.S. Chang, C.L. Lee, and C.R.C. Wang, “Gold Nanorods: Electrochemical Synthesis and Optical Properties.” J. Phys.Chem. B, 101, 6661. (1997)
[35] B. Nikoobakht, and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method”, Chem. Mater. 15, 1957 (2003)
[36] G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced Luminescence from the Noble Metals and its Enhancement on Roughened Surfaces.” Phys. Rev. B 33, 7923 (1986)
[37] S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods”, J. Phys. Chem. B 103, 8410-8426 (1999)
[38] S. Jiang, “Surface Enhanced Raman Scattering Spectroscopy”, Term paper for Physics 598 OS, University of Illinois, Urbana, IL
[39] U.K. Sur, “Surface-Enhanced Raman Spectroscopy (Recent Advancement of Raman Spectroscopy)” (2010).
[40] Hyo-Sok Ahn, Pham Duc Cuong, Sangkwon Park, Yong-Wook Kim, and Jong-Choo Lim , “Effect of molecular structure of self-assembled monolayers on their tribological behaviors in nano- and microscales”, Wear 255 819–825 (2003)
[41] D. J. Tiani, and J. E. Pemberton , “Emersion of 11-Mercapto-1-undecanol -Modified Ag Substrates from Aqueous and Nonaqueous Solvents: The Effect of Emersion Velocity on Emersed Solvent Layer Thickness”, Langmuir 19, 6422 (2003)
[42] G. Demirel, M. C. Akmak, T. C. Aykara, and S. Ellialtıoglu , “Chemisorption of 3-Aminopropyltrimethoxysilane on Si(001)-(2 × 2)”, J. Phys. Chem. C 111, 15020 (2007)
[43] Y. Ying, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold Nanorods: Electrochemical Synthesis and Optical Properties”, J. Phys. Chem. B 101, 6661. (1997)
[44] N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods”, J. Phys. Chem. B 105, 4065 (2001)
[45] D.G. Duff, A. Baiker, and P.P. Edwards, “A new hydrosol of gold clusters: Formation and particle size variation”, Langmuir 9, 2301 (1993)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw