進階搜尋


 
系統識別號 U0026-3005201210395300
論文名稱(中文) 過量麻醉劑異丙酚導致體外內皮細胞毒性與體內內皮障壁功能失調
論文名稱(英文) Anesthetic Propofol Overdose Causes Endothelial Cytotoxicity In Vitro and Endothelial Barrier Dysfunction In Vivo
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 100
學期 2
出版年 101
研究生(中文) 林明忠
研究生(英文) Ming-Chung Lin
學號 S97971159
學位類別 碩士
語文別 英文
論文頁數 37頁
口試委員 指導教授-林秋烽
口試委員-劉彥青
口試委員-邢中熹
中文關鍵字 異丙酚  內皮細胞  肝醣合成酶激酶  細胞凋亡  細胞壞死  血管通透性 
英文關鍵字 propofol  endothelial cells  GSK-3  apoptosis  necrosis  vascular permeability 
學科別分類
中文摘要 異丙酚 (Propofol),是一個短效的靜脈麻醉劑。臨床上如果過量及過長時間使用異丙酚可能會造成多重器官/組織之細胞毒性,包括了腦、心臟、腎臟、骨骼肌細胞與免疫細胞等;然而其確切的致病機轉至今仍未被報導,特別是在血管內皮細胞的部分。根據我們先前的研究成果顯示巨噬細胞在過量的異丙酚使用下,其肝醣合成酶激酶 (GSK)-3會活化而促進細胞凋亡。由於異丙酚是使用在全身血液循環中,因此我們推測過量之異丙酚會透過活化血管內皮細胞之GSK-3進而造成細胞毒殺作用。本研究之結果顯示過量的異丙酚會抑制人類微血管內皮細胞與人類主動脈內皮細胞之生長。在投予藥物後,大多數內皮細胞會進行與凋亡蛋白酶(caspase)無關之類壞死狀態的細胞死亡;溶酶體的膜通透後續造成組織蛋白酶 (cathepsin) D的活化而決定了類壞死狀態的細胞死亡;且此細胞死亡無關乎自體吞噬作用。再者,過量的異丙酚也會導致caspase依賴性之細胞凋亡;內皮細胞之caspase-3活化後會扮演粒線體膜電位喪失後之下游角色;然而不管是溶酶體之cathepsin B或是cathepsin D,對於此細胞凋亡的形成都是非必要的。且顯而易見地,GSK-3的活化對於過量之異丙酚所導致的細胞凋亡是必要的,但無關乎其所引起之類壞死狀態的細胞死亡。此外,為小鼠腹腔注射過量的異丙酚會導致腹膜血管通透性增加。總結,這些研究結果展示了過量異丙酚在體外對於內皮細胞的細胞毒殺作用,包括了cathepsin D所調控的類壞死狀態之細胞死亡和GSK-3所調控之細胞凋亡,與異丙酚在體內所導致的血管內皮障蔽之功能失調。
英文摘要 An overdose of propofol following a prolonged treatment may cause cellular cytotoxicity in multiple organs/tissues, such as brain, heart, kidney, skeletal muscle, and immune cells; however, the molecular mechanism remains undocumented particularly in vascular endothelial cells. Our previous studies showed that activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes under overdose propofol treatment. Regarding the medication of propofol in circulation, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity through GSK-3. Propofol overdose (100 µg/ml) induced growth inhibition in human aortic endothelial cells and human microvascular endothelial cells. After treatment, most of endothelial cells underwent caspase-independent necrosis-like cell death. Activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death independent of autophagy. Furthermore, propofol overdose also induced caspase-dependent apoptosis. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, neither lysosomal cathepsin B nor cathepsin D was required for apoptosis. Notably, activation of GSK-3 was essential for overdose propofol-induced apoptosis but not necrosis-like cell death. Intraperitoneal treatment of overdose propofol in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated apoptosis, on endothelial cells in vitro, and the endothelial barrier dysfunction by propofol in vivo.
論文目次 中文摘要 I
Abstract II
誌謝 III
Abbreviations IV
Contents V
List of Figures VII
INTRODUCTION 1
1.1 Introduction of Propofol 1
1.2 Pathogenesis of Propofol Infusion Syndrome 1
1.3 Propofol-induced Apoptotic Cell Death 2
1.4 Propofol-induced Necrotic Cell Death 2
HYPOTHESIS 4
MATERIALS AND METHODS 5
3.1 Reagents and Antibodies 5
3.2 Cell Cultures 5
3.3 Animals 6
3.4 Permeability Changes 6
3.5 Viability Assay 7
3.6 Cytotoxicity Assay 7
3.7 Apoptosis Assay 8
3.8 LMP Assay 8
3.9 Mitochondrial Functional Assay 9
3.10 Western Blotting 9
3.11 Lentiviral-based Short Hairpin RNA Transfection 10
3.12 Statistical Analysis 11
RESULTS 12
4.1 Propofol Overdose Induced Growth Inhibition, Apoptosis, and Caspase- independent Necrosis-like Cell Death in Human Endothelial Cells 12
4.2 Propofol Overdose Induced LMP and Lysosomal Protease Cathepsin D- regulated Necrosis-like Cell Death Independent of Autophagy 13
4.3 Propofol Overdose Induced Caspase-independent MTP Loss and Caspase-3-dependent Cell Apoptosis 14
4.4 GSK-3 Activation, GSK-3-regulated Mitochondrial Apoptosis, and GSK-3-independent Necrosis-like Cell Death were Involved in Propofol Overdose-induced Cytotoxicity 15
4.5 Propofol Overdose Increases Peritoneal Vascular Permeability in BALB/c Mice 16
DISCUSSION 17
CONCLUSIONS 22
REFERENCES 23
FIGURES AND FIGURE LEGENDS 30
參考文獻 Amaravadi, R. K., and Thompson, C. B. (2007). The roles of therapy-induced autophagy and necrosis in cancer treatment. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 7271-7279.

Balyasnikova, I. V., Visintine, D. J., Gunnerson, H. B., Paisansathan, C., Baughman, V. L., Minshall, R. D., and Danilov, S. M. (2005). Propofol attenuates lung endothelial injury induced by ischemia-reperfusion and oxidative stress. Anesthesia and analgesia 100, 929-936.

Bell, B. D., Leverrier, S., Weist, B. M., Newton, R. H., Arechiga, A. F., Luhrs, K. A., Morrissette, N. S., and Walsh, C. M. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proceedings of the National Academy of Sciences of the United States of America 105, 16677-16682.

Beurel, E., and Jope, R. S. (2006). The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Progress in neurobiology 79, 173-189.

Bidere, N., Lorenzo, H. K., Carmona, S., Laforge, M., Harper, F., Dumont, C., and Senik, A. (2003). Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. The Journal of biological chemistry 278, 31401-31411.

Blomgran, R., Zheng, L., and Stendahl, O. (2007). Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. Journal of leukocyte biology 81, 1213-1223.

Boya, P., Andreau, K., Poncet, D., Zamzami, N., Perfettini, J. L., Metivier, D., Ojcius, D. M., Jaattela, M., and Kroemer, G. (2003a). Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. The Journal of experimental medicine 197, 1323-1334.

Boya, P., Gonzalez-Polo, R. A., Poncet, D., Andreau, K., Vieira, H. L., Roumier, T., Perfettini, J. L., and Kroemer, G. (2003b). Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22, 3927-3936.

Boya, P., and Kroemer, G. (2008). Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434-6451.

Branca, D., Roberti, M. S., Lorenzin, P., Vincenti, E., and Scutari, G. (1991). Influence of the anesthetic 2,6-diisopropylphenol on the oxidative phosphorylation of isolated rat liver mitochondria. Biochemical pharmacology 42, 87-90.

Carli, F., and Mistraletti, G. (2006). Metabolic and endocrine effects of sedative agents. Minerva anestesiologica 72, 395-399.

Chautan, M., Chazal, G., Cecconi, F., Gruss, P., and Golstein, P. (1999). Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9, 967-970.

Chen, J., Gu, Y., Shao, Z., Luo, J., and Tan, Z. (2010). Propofol protects against hydrogen peroxide-induced oxidative stress and cell dysfunction in human umbilical vein endothelial cells. Molecular and cellular biochemistry 339, 43-54.

Chen, R. M., Wu, C. H., Chang, H. C., Wu, G. J., Lin, Y. L., Sheu, J. R., and Chen, T. L. (2003). Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology 98, 1178-1185.

Chen, Y., McMillan-Ward, E., Kong, J., Israels, S. J., and Gibson, S. B. (2008). Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell death and differentiation 15, 171-182.

Chen, Y. S., Chen, K. H., Liu, C. C., Lee, C. T., Yang, C. H., Chuang, K. C., and Lin, C. R. (2007). Propofol-induced vascular permeability change is related to the nitric oxide signaling pathway and occludin phosphorylation. Journal of biomedical science 14, 629-636.

Chwieralski, C. E., Welte, T., and Buhling, F. (2006). Cathepsin-regulated apoptosis. Apoptosis 11, 143-149.

Ferri, K. F., and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nature cell biology 3, E255-263.

Fudickar, A., and Bein, B. (2009). Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva anestesiologica 75, 339-344.

Gando, S. (2004). [Systemic inflammatory response syndrome (SIRS) and endothelial cell injury]. Nihon rinsho 62, 2244-2250.

Garrido, C., Galluzzi, L., Brunet, M., Puig, P. E., Didelot, C., and Kroemer, G. (2006). Mechanisms of cytochrome c release from mitochondria. Cell death and differentiation 13, 1423-1433.

Guicciardi, M. E., Leist, M., and Gores, G. J. (2004). Lysosomes in cell death. Oncogene 23, 2881-2890.

Ha, J. H., Noh, H. S., Shin, I. W., Hahm, J. R., and Kim, D. R. (2011). Mitigation of H2O2-induced autophagic cell death by propofol in H9c2 cardiomyocytes. Cell biology and toxicology 28, 19-29.

Haendeler, J., Popp, R., Goy, C., Tischler, V., Zeiher, A. M., and Dimmeler, S. (2005). Cathepsin D and H2O2 stimulate degradation of thioredoxin-1: implication for endothelial cell apoptosis. The Journal of biological chemistry 280, 42945-42951.

Hsing, C. H., Chen, Y. H., Chen, C. L., Huang, W. C., Lin, M. C., Tseng, P. C., Wang, C. Y., Tsai, C. C., Choi, P. C., and Lin, C. F. (2012). Anesthetic Propofol Causes Glycogen Synthase Kinase-3beta-regulated Lysosomal/Mitochondrial Apoptosis in Macrophages. Anesthesiology 116, 868-881.

Huang, W. C., Lin, Y. S., Wang, C. Y., Tsai, C. C., Tseng, H. C., Chen, C. L., Lu, P. J., Chen, P. S., Qian, L., Hong, J. S., and Lin, C. F. (2009). Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide- induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology 128, e275-286.

Jaattela, M., Cande, C., and Kroemer, G. (2004). Lysosomes and mitochondria in the commitment to apoptosis: a potential role for cathepsin D and AIF. Cell death and differentiation 11, 135-136.

Kikuchi, T., Wang, Y., Sato, K., and Okumura, F. (1998). In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats. British journal of anaesthesia 80, 644-648.

Krasowski, M. D., Nishikawa, K., Nikolaeva, N., Lin, A., and Harrison, N. L. (2001). Methionine 286 in transmembrane domain 3 of the GABAA receptor beta subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology 41, 952-964.

Kroemer, G., Galluzzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiological reviews 87, 99-163.

Kroemer, G., and Jaattela, M. (2005). Lysosomes and autophagy in cell death control. Nat Rev Cancer 5, 886-897.

Kwak, S. H., Choi, J. I., and Park, J. T. (2004). Effects of propofol on endotoxin-induced acute lung injury in rabbit. Journal of Korean medical science 19, 55-61.

Levine, B., and Yuan, J. (2005). Autophagy in cell death: an innocent convict? The Journal of clinical investigation 115, 2679-2688.

Li, W., Yuan, X., Nordgren, G., Dalen, H., Dubowchik, G. M., Firestone, R. A., and Brunk, U. T. (2000). Induction of cell death by the lysosomotropic detergent MSDH. FEBS letters 470, 35-39.

Lin, C. F., Chen, C. L., Chiang, C. W., Jan, M. S., Huang, W. C., and Lin, Y. S. (2007). GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. Journal of cell science 120, 2935-2943.

Lum, H., and Malik, A. B. (1994). Regulation of vascular endothelial barrier function. The American journal of physiology 267, L223-241.

Luo, T., Xia, Z., Ansley, D. M., Ouyang, J., Granville, D. J., Li, Y., Xia, Z. Y., Zhou, Q. S., and Liu, X. Y. (2005). Propofol dose-dependently reduces tumor necrosis factor-alpha-induced human umbilical vein endothelial cell apoptosis: effects on Bcl-2 and Bax expression and nitric oxide generation. Anesthesia and analgesia 100, 1653-1659.

Mackenzie, N., and Grant, I. S. (1987). Propofol for intravenous sedation. Anaesthesia 42, 3-6.

Maiuri, M. C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature reviews 8, 741-752.

McKune, C. M., Brosnan, R. J., Dark, M. J., and Haldorson, G. J. (2008). Safety and efficacy of intramuscular propofol administration in rats. Vet Anaesth Analg 35, 495-500.

Noh, H. S., Shin, I. W., Ha, J. H., Hah, Y. S., Baek, S. M., and Kim, D. R. (2010). Propofol protects the autophagic cell death induced by the ischemia/reperfusion injury in rats. Molecules and cells 30, 455-460.

Pain, L., Jeltsch, H., Lehmann, O., Lazarus, C., Laalou, F. Z., and Cassel, J. C. (2000). Central cholinergic depletion induced by 192 IgG-saporin alleviates the sedative effects of propofol in rats. British journal of anaesthesia 85, 869-873.

Schenkman, K. A., and Yan, S. (2000). Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Critical care medicine 28, 172-177.

Shapiro, N. I., Schuetz, P., Yano, K., Sorasaki, M., Parikh, S. M., Jones, A. E., Trzeciak, S., Ngo, L., and Aird, W. C. (2010). The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Critical care (London, England) 14, R182.

Straiko, M. M., Young, C., Cattano, D., Creeley, C. E., Wang, H., Smith, D. J., Johnson, S. A., Li, E. S., and Olney, J. W. (2009). Lithium protects against anesthesia-induced developmental neuroapoptosis. Anesthesiology 110, 862-868.

Tsuchiya, M., Asada, A., Arita, K., Utsumi, T., Yoshida, T., Sato, E. F., Utsumi, K., and Inoue, M. (2002).Induction and mechanism of apoptotic cell death by propofol in HL-60 cells. Acta anaesthesiologica Scandinavica 46, 1068-1074.

Turk, B., and Turk, V. (2009). Lysosomes as "suicide bags" in cell death: myth or reality? The Journal of biological chemistry 284, 21783-21787.

Vanlangenakker, N., Vanden Berghe, T., Krysko, D. V., Festjens, N., and Vandenabeele, P. (2008). Molecular mechanisms and pathophysiology of necrotic cell death. Current molecular medicine 8, 207-220.

Vasile, B., Rasulo, F., Candiani, A., and Latronico, N. (2003). The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive care medicine 29, 1417-1425.

Wang, Y., Huang, W. C., Wang, C. Y., Tsai, C. C., Chen, C. L., Chang, Y. T., Kai, J. I., and Lin, C. F. (2009). Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-regulating inflammation and renal cell apoptosis. British journal of pharmacology 157, 1004-1013.

Wu, H., Jiang, C., Gan, D., Liao, Y., Ren, H., Sun, Z., Zhang, M., and Xu, G. (2011). Different effects of low- and high-dose insulin on ROS production and VEGF expression in bovine retinal microvascular endothelial cells in the presence of high glucose. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 249, 1303-1310.

Ypsilantis, P., Politou, M., Mikroulis, D., Pitiakoudis, M., Lambropoulou, M., Tsigalou, C., Didilis, V., Bougioukas, G., Papadopoulos, N., Manolas, C., and Simopoulos, C. (2007). Organ toxicity and mortality in propofol-sedated rabbits under prolonged mechanical ventilation. Anesthesia and analgesia 105, 155-166.

Zhao, R., Fang, S. H., Lin, K. N., Huang, X. Q., Lu, Y. B., Zhang, W. P., and Wei, E. Q. (2011). Pranlukast attenuates hydrogen peroxide-induced necrosis in endothelial cells by inhibiting oxygen reactive species-mediated collapse of mitochondrial membrane potential. Journal of cardiovascular pharmacology 57, 479-488.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-06-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-06-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw