進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3001202020072800
論文名稱(中文) 混合漣波適應性導通時間控制之非反向升-降壓型直流-直流轉換器
論文名稱(英文) Mixed-Ripple Adaptive On-Time Control Non-Inverting Buck-Boost DC-DC Converter
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 108
學期 1
出版年 109
研究生(中文) 陳彥宇
研究生(英文) Yan-Yu Chen
學號 N26060193
學位類別 碩士
語文別 中文
論文頁數 123頁
口試委員 指導教授-魏嘉玲
口試委員-張順志
口試委員-蔡建泓
口試委員-鄭光偉
口試委員-黃崇勛
中文關鍵字 適應性導通時間控制  連波控制  直流-直流轉換器 
英文關鍵字 Adaptive on-time  Ripple-based control  DC-DC converter 
學科別分類
中文摘要 近年來,穿戴式裝置產品之市場需求大增,而「穿戴式」(wearable)之概念即產品需有輕、小以及攜帶便利的特點,因此必須採用能整合於裝置內的小型電池,此外穿戴式裝置已不再是只具單一功能之產品,更多高規格與多功能之應用也相繼研發,針對這些產品,本論文提出一非反向降壓-升壓直流-直流轉換器,其輸入範圍可應用於鋰電池的工作電壓(2.7V-4.2V),在系統控制方面,採用混合漣波適應性導通時間控制,可藉由此混合漣波之控制方(Mixed-Ripple Control)法取代轉換器中較複雜之補償網路或是晶片外部之補償被動元件,以及搭配適應性導通時間(Adaptive on-time)控制,因其架構簡易外,能使轉換器在寬負載範圍下能有較佳之效率。
本論文之設計採用台灣積體電路公司0.35μm,2P4M 5V混合訊號製程,晶片大小約4 mm2。輸入電壓為2.5V-5.0V、輸出負載電流最大可達300mA,輸出電壓調節在3.3V,且最高效率可達到97%。
英文摘要 The market for wearable devices has blossomed in recent years. The concept of “wearable” is to make products lighter and handier. As a result, these products must be equipped with small-scale batteries; moreover, wearable devices are no longer designed with a single function, and more high performance and multifunctional devices are introduced to the market. For these devices, a mixed-ripple adaptive on-time control non-inverting buck-boost converter is proposed in this paper. The input voltage range of the proposed converter is suitable for Li-ion batteries. By using the mixed-ripple control method, the compensation network and the off-chip passive components for compensation can be replaced. Besides, an adaptive on-time controller is adopted because of its simple structure, and which can make the converter achieve high efficiency within a wide load range.
The proposed chip was fabricated by TSMC 0.35μm and 2P4M 5V mixed-signal process, and the chip size is about 4 mm2. The range of input voltage is 2.5V-5.0V, the range of output load current is 0-300mA, and the output voltage is set to 3.3V. The measured peak efficiency is 97%.
論文目次 摘要 III
INTRODUCTION V
METHODS AND DESIGN VI
RESULTS AND DISCUSSION VIII
CONCLUSION XI
誌謝 XII
目錄 XIII
第1章 簡介 1
1.1. 研究動機 1
1.2. 論文架構 3
第2章 背景知識與資料 4
2.1. 切換式電源轉換器介紹 4
2.1.1. 降壓轉換器 (Buck Converter) 4
2.1.2. 升壓轉換器 (Boost Converter) 5
2.1.3. 反向降壓-升壓轉換器 (Inverting Buck-Boost Converter) 6
2.1.4. 非反向降壓-升壓轉換器 (Non-inverting Buck-Boost Converter) 7
2.2. 電源轉換器控制方法 10
2.2.1. 脈波寬度調變 (Pulse Width Modulation, PWM) 10
2.2.2. 脈波頻率調變 (Pulse Frequency Modulation, PFM) 11
2.2.3. 漣波控制 (Ripple-Based Control, RBC) 12
2.2.4. 控制方法比較 14
2.3. 近期相關研究 15
2.3.1. 虛擬漣波控制 (Virtual Ripple Control) 15
2.3.2. 混合漣波適應性導通時間控制(Mixed-Ripple A.O.T Controlled) 18
2.3.3. 遲滯電流模式控制Hysteretic-Current-Mode Control 19
2.3.4. 文獻比較 22
第3章 電路設計與系統架構 23
3.1. 系統架構與簡介 23
3.2. 整體電路架構與功能介紹 25
3.2.1. 適應性導通時間產生器(Adaptive On-Time Generator) 27
3.2.1.1. 升壓模式(Boost Mode): 27
3.2.1.2. 降壓模式(Buck Mode) 29
3.2.2. 電流感測器(Current Sensor) 30
3.2.3. 帶差參考電壓電路(Bandgap Reference Circuit) 34
3.2.4. 適應性導通時間控制器(AOT Controller) 36
3.2.5. 零電流偵測器(Zero Current Detector) 40
3.2.6. 死區時間控制器(Dead-Time Controller) 42
3.2.6.1. 升壓模式(Boost Mode) 42
3.2.6.2. 降壓模式(Buck Mode) 43
3.2.7. 模態選擇器(Mode Selector) 45
3.2.7.1. 電壓差轉電流電路(Voltage Difference to Current Circuit, VDCC) 47
3.2.7.2. 磁滯視窗電路(Hysteretic Window Circuit, HWC) 48
3.2.7.3. 模態選擇(Mode Select) 49
3.3. 系統啟動過程 52
3.3.1. 初始階段 52
3.3.2. 閉迴路階段 53
第4章 模擬結果與布局考量 54
4.1. 模擬結果 54
4.1.1. 啟動過程 54
4.1.2. 穩定狀態 56
4.1.2.1. 升壓模式 56
4.1.2.2. 降壓模式 59
4.1.2.3. 混合模式 61
4.1.3. 暫態響應 64
4.1.3.1. 升壓模式 64
4.1.3.2. 降壓模式 65
4.1.3.3. 混和模式 66
4.1.4. 轉換器效率模擬 67
4.2. 佈局考量 68
4.3. 晶片打線圖 71
第5章 量測結果 73
5.1. 晶片量測環境 73
5.2. 晶片量測結果 78
5.2.1. 啟動過程 78
5.2.2. 穩定狀態 80
5.2.2.1. 升壓模式 80
5.2.2.2. 降壓模式 83
5.2.2.3. 混合模式 86
5.2.3. 負載暫態變化 90
5.2.3.1. 升壓模式 90
5.2.3.2. 降壓模式 91
5.2.3.3. 混合模式 92
5.3. 轉換器調節率 94
5.3.1. 負載電流調節率(Load regulation) 94
5.3.2. 輸入電壓調節率(Line regulation) 95
5.4. 轉換器效率 96
5.5. 晶片性能與比較 97
第6章 結論與未來展望 99
參考文獻 100
參考文獻 [1] Chi-Hsiang Huang, Hung-Hsien Wu,Student Member, IEEE, and Chia-Ling Wei , Senior Member, IEEE, "Compensator-Free Mixed-Ripple Adaptive On-Time," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 53, no. 2, Feb. 2018.
[2] Chia-Hsing Li, Huang-Jen Chiu, Yu-Kang Lo, Chao-Chun Wang, "Adaptive on-time control with adjustable virtual ripple and offset cancellation for buck converter," IET Power Electronics, vol. 8, no. 12, May. 2015.
[3] Ping-Ching Huang, Wei-Quan Wu, Hsin-Hsin Ho and Ke-Horng Chen, "Hybrid Buck–Boost Feedforward and Reduced Average Inductor Current Techniques in Fast Line Transient and High-Efficiency Buck–Boost Converter," IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 25, no. 3, Mar. 2010.
[4] Chia-Ling Wei,Chin-Hong Chen, Kuo-Chun Wu, and I-Ting Ko, "Design of an Average-Current-Mode Noninverting Buck–Boost DC–DC Converter With Reduced Switching and Conduction Losses," IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 27, no. 12, Dec. 2012.
[5] Jiann-Jong Chen, Pin-Nan Shen, and Yuh-Shyan Hwang, "A High-Efficiency Positive Buck–Boost Converter With Mode-Select Circuit and Feed-Forward Techniques," IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 28, no. 9, Sep. 2013.
[6] Xiang-En Hong, Jian-Fu Wu, and Chia-Ling Wei, "98.1%-Efficiency Hysteretic-Current-Mode Noninverting Buck–Boost DC-DC Converter With Smooth Mode Transition," IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 32, no. 3, Mar. 2017.
[7] Vincent Ng, Seth Sanders, "A 92%-Efficiency Wide-Input-Voltage-Range Switched-Capacitor DC-DC Converter," IEEE ISSCC, pp. 282-283, Feb. 2012.
[8] Robert W. Erickson, Dragan Maksimovic, Fundamentals of Power Electronics, Springer, 2001.
[9] B. Sahu G.A. Rincon-Mora, "A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications," IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 443-452, Mar. 2004.
[10] Richard Redl, Jian Sun, "Ripple-Based Control of Switching," IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 24, no. 12, Dec. 2009.
[11] W. H. Ki, K. M. Lai, and C. Zhan, “Charge balance analysis and state transition analysis of hysteretic voltage mode switching converters,” IEEE Trans. Circuits Syst. I, pp. 1142-1153, May 2011.
[12] J. C. Tsai, C. L. Chen, Y. H. Lee, H. Y. Yang, M. S. Hsu, K. H. Chen, "Modified Hysteretic Current Control (MHCC) for Improving Transient Response of Boost Converter," IEEE Trans. Circuits Syst. I, vol. 58, no. 8, pp. 1967-1979, Aug 2011.
[13] Yikai Wang,Dongsheng Ma,, "A 450-mV Single-Fuel-Cell Power Management Unit With Switch-Mode Quasi-V2 Hysteretic Control and Automatic Startup on 0.35-um Standard CMOS Process," IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 47, no. 9, Sep. 2012.
[14] X. XU, M. ZHAO, X. Wu, "On-chip boost regulator with projected off- and on-time control," Proc.J. Zhejiang University, vol. 10(8), pp. 1223-1230, 2009.
[15] E. Sackinger W. Guggenbuhl, "A versatile building block: The CMOS differential difference amplifier," IEEE Journal of Solid-State Circuits, Vols. SC-22, no. 2, pp. 287-294, Apr. 1987.
[16] W. Yan, C. Pi, W. Li and R. Liu, "Dynamic dead-time controller for synchronous buck DC-DC converters," Electronics Letters, vol. 46, pp. 164-165, Jan. 2010.
[17] T. Y. Man, P. K. T. Mok, and M. Chan,, "An Auto-Selectable-Frequency Pulse-Width Modulator for Buck Converters with Improved Light-Load Efficiency," in IEEE Int. Solid-State Circuits Conf, San Francisco, 2008.
[18] Hung-Hsien Wu, Chia-Ling Wei, Yu-Chen Hsu, and Robert B. Darling, "Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter With a Near-Threshold Startup Voltage and High Efficiency," IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 30, no. 4, APRIL 2015.
[19] Y. T. Wong, C. W. Ng, H. M. Wan, K. K. Kwong, Y. H. Lam, W. H. Ki, “Near-threshold startup integrated boost converter with slew rate enhanced error amplifier,” Proc. IEEE Int. Symp. Circuits Syst., pp. 2409-2412, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-01-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-01-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw