進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3001202001074900
論文名稱(中文) 無凝聚性土壤於排水與不排水條件下受反覆外力作用之行為
論文名稱(英文) Research on the Behavior of Cohesionless Soil Subjected to Cyclic Load under Drained and Undrained Conditions
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 108
學期 1
出版年 108
研究生(中文) 林啓聖
研究生(英文) Chi Sheng Lin
學號 N88031037
學位類別 博士
語文別 中文
論文頁數 136頁
口試委員 指導教授-郭玉樹
口試委員-吳建宏
口試委員-古志生
口試委員-黃宗宸
口試委員-曾韋禎
中文關鍵字 離岸風電  勁度衰減模型  永久應變量  超額孔隙水壓  土壤反覆三軸試驗 
英文關鍵字 offshore wind energy  stiffness degradation model  permanent deformation  excess pore pressure  cyclic triaxial test 
學科別分類
中文摘要 因應台灣離岸風電的開發以及對後續離岸工程需求,離岸結構物受海域環境反覆外力作用時之基礎穩定性研究愈趨重要。本研究針對無凝聚性與低凝聚性土壤於排水條件下受反覆應力作用之永久變形量,以及於不排水條件下受反覆應力作用之超額孔隙水壓激發量同時進行研究,提出反覆外力作用下土壤累積變形量與孔隙水壓激發量之預測方法,以應用於離岸風電基礎設計時之反覆載重設計考量。土壤受外力反覆作用時之永久變形量為離岸風機基礎設計服務極限條件(Service limit state, SLS),Kuo (2008)提出土壤勁度衰減模型,首次將土壤反覆三軸試驗應用於離岸風機大口徑單樁基礎受長期反覆外力作用次數下之基礎穩定性評估;而我國位於地震作用頻繁區域,離岸工程設計時需將海床土壤液化納入設計考量。Martin等人提出之超額孔隙水壓預測概念,可預測結構物基礎周圍土壤於不排水條件下受反覆外力作用時造成之超額孔隙水壓。上述兩研究原本之應用目標不同,但勁度衰減模型方法應用過程中可同時取得孔隙水壓激發量預測所需之參數,可將兩研究串聯以提升效益。本文針對Kuo (2008)之勁度衰減模型所需的實驗回歸參數進行研究,並與Martin et al. (1975)之研究建立連結,以建立可同時考量樁周土壤於排水情況下受反覆外力時之永久變形量以及不排水考量下之超額孔隙水壓激發之方法。本研究將土壤緊密程度、初始應力條件及反覆應力條件納入考量,以進行土壤反覆三軸剪力試驗,探討各因子對勁度衰減模型實驗參數(b1及b2)之影響,並建立回歸參數之推估建議式。實驗結果顯示土壤相對密度與反覆外力之初始反覆應力比對勁度衰減模型實驗參數b1與b2有明顯之影響趨勢,本文依試驗結果提出經驗計算式,可合理計算勁度衰減模型實驗參數。本研究參考Martin et al. (1975)之超額孔隙水壓增量預測模式所需參數取得之概念,將其一維超額孔隙水壓預測模式應用於三維土壤變形架構下之超額孔隙水壓預測,同時以相同之應力條件與土壤緊密程度進行不排水反覆三軸剪力試驗,取得土壤之超額孔隙水壓激發量,藉由比對特定緊密程度之土壤受相同反覆應力條件下之超額孔隙水壓實驗值與預測值,以驗證本研究之合理性。本研究同時針對土壤受長期反覆作用力下之永久變形量以及孔隙水壓增量變化進行研究,可應用於離岸風機基礎設計之極端極限條件及服務極限條件計算檢核。
英文摘要 React to the development of offshore wind energy and the outlook of the offshore engineering in Taiwan, the permanent deformation and the excess pore pressure generated in the cohesionless soil under cyclic load were further researched in this thesis. The cyclic triaxial test and the triaxial consolidation test were used. To extend the application of the SDM, the relative density of specimen, the scale of the stress, and the initial cyclic stress ratio were taken as the control variables to explore the effects on the empirical parameters in the SDM. On the other hand, to predict the excess pore pressure in the soil during the cyclic load, this thesis used the triaxial test to determine the necessary parameters for the calculation. The results revealed that the empirical parameters in the SDM are dependent on the relative density of specimen and the initial cyclic stress ratio. The relationships between them were constructed in this research. In the section of predicting the excess pore pressure, the results showed that the model proposed by Martin et al. is available if the volumetric strain of the soil can be estimated. The results in this thesis are able to extend the scope of the application of the intrinsic methods, and practically be used in the foundation design procedures of offshore engineering.
論文目次 摘要 I
Extended Abstract II
誌謝 IX
目錄 X
表目錄 XII
圖目錄 XIII
符號 XVIII
第一章 前言 1
1-1 研究背景與目的 1
1-2 研究架構 3
第二章 文獻回顧 5
2-1 無凝聚性土壤之受力變形行為 5
2-1-1 靜態三軸試驗中無凝聚性土壤之受力變形行為 6
2-1-2 反覆三軸試驗中無凝聚性土壤之受力變形行為 10
2-2 無凝聚性土壤於排水條件下受反覆作用力時之軸向變形量預測 18
2-3 無凝聚性土壤於不排水條件下受反覆作用力時之孔隙水壓預測 27
2-3-1 超額孔隙水壓累積量預測模式 27
2-3-2 超額孔隙水壓增量預測模式 30
第三章 研究方法 36
3-1 試驗土樣 36
3-2 土壤反覆三軸試驗-勁度衰減模型影響因子說明與土壤體應變量量測 43
3-3 以土壤三軸壓密試驗求得土壤體積回彈切線模數 50
第四章 土壤受反覆作用力下之變形量預測及勁度衰減模型參數 52
4-1 勁度衰減模型實驗回歸參數重複性與敏感度分析 52
4-2 有效應力比對土壤反覆變形行為與勁度衰減模型參數之影響 57
4-3 初始反覆應力比σ1(0)/σ3(0)對土壤反覆變形行為與勁度衰減模型參數之影響 61
4-4 相對密度對土壤反覆變形行為與勁度衰減模型參數之影響 68
4-5 反覆外力作用下之土壤永久變形行為探討 79
第五章 土壤受反覆作用力下之超額孔隙水壓預測 81
5-1 土壤於排水條件受反覆作用力時之體應變預測 81
5-1-1 土壤體應變預測式探討 81
5-1-2 加載頻率對無凝聚性砂土受反覆外力作用下之體應變影響 85
5-2 三維土壤體積回彈切線模數 87
5-3 超額孔隙水壓預測與實證 89
第六章 彰濱海域海床土壤反覆變形行為與孔隙水壓激發預測 99
6-1 勁度衰減模型實驗參數與超額孔隙水壓激發預測模型參數取得流程 99
6-2 彰濱砂基本資料 102
6-3 土壤永久變形量預測範例 109
6-3-1 彰濱砂勁度衰減模型實驗參數取得 109
6-3-2 彰濱砂之永久變形量預測 114
6-4 超額孔隙水壓預測範例 119
第七章 結論與建議 124
7-1 結論 124
7-2 建議 126
參考文獻 127
附錄A #140標準砂試體靜態與動態應力應變行為比較 i
附錄B 彰濱砂試體靜態與動態應力應變行為比較 x
參考文獻 1. Addo-Abedi, F. Y. (1980). “The behavior of soils in repeated triaxial compression,” Ph.D. thesis, Department of Civil of Engineering, Queen’s University, Kingston, Ontario, Canada.
2. Akili, W. (2006). “Permanent and Resilient Deformations of a Dry Sand under Repeated Compressive Loads,” In GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, pp. 1-6.
3. Achmus, M., Kuo, Y.-S., Abdel-Rahman, K. (2008). “Zur Bemessung von Monopiles für zyklische Lasten,” Bauingenieur, 83, Heft 7-8, pp. 303-311.
4. Anderson, W. F., and Fair, P. (2008). “Behavior of railroad ballast under monotonic and cyclic loading,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 3, pp. 316-327.
5. ASTM (2011a). “Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils,” ASTM D4767-11.
6. ASTM (2011b). “Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils,” ASTM D7181-11.
7. ASTM (2013). “Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil,” ASTM D5311-13.
8. ASTM (2015). “Standard Practice for Thin-Walled Tube Sampling of Fine-Grained Soils for Geotechnical Purposes,” ASTM D1587M-15.
9. Albiker, J. (2016). “Untersuchungen zum Tragverhalten zyklisch lateral belasteter Pfähle in nichtbindigen Böden,” Doctoral dissertation, Institut für Geotechnik (IGtH), Leibniz Universität Hannover, Hannover. (in German)
10. Alam, M. J. I., Gnanendran, C. T., and Lo, S. R. (2017). “Modelling the settlement behaviour of a strip footing on sloping sandy fill under cyclic loading conditions,” Computers and Geotechnics, Vol. 86, pp. 181-192.
11. Barksdale, R. D. (1972). “Laboratory Evaluation of Rutting in Base Course Materials,” Proceedings of the 3rd International Conference on the Structural Design of Asphalt Pavements, London, September 11-15, Vol. 1, pp. 161-174.
12. Booker, J., Rahman, M. S., and Seed, H. B. (1976). “A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading,” EERC report.
13. Bolton, M. D. (1986). “Strength and dilatancy of sands,” Geotechnique, Vol. 36, No. 1, pp. 65-78.
14. Byrne, P. M. (1991). “A Cyclic Shear-Volume Coupling and Pore Pressure Model for Sand,” Proceedings of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.
15. Been, K., and Jefferies, M. (2004). “Stress dilatancy in very loose sand,” Canadian Geotechnical Journal, Vol. 41, No. 5, pp. 972-989.
16. BSH (2012). “Guidance for use of the BSH standard “Design of Offshore Wind Turbines”,” Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency of Germany)
17. Benoot, J., Haegeman, W., François, S., and Degrande, G. (2014). “Experimental study of strain accumulation of silica sand in a cyclic triaxial test,” In Proceedings of the 23rd European Young Geotechnical Engineers Conference, Universitat Politècnica de Catalunya; Barcelona, Vol. 1, No. 1, pp. 3-6.
18. BSH (2014). “Guidance for use of the BSH standard “Standard Ground Investigation-Minimum Requirements for Geotechnical Surveys and Investigation into Offshore Wind Energy Structures, Offshore Stations and Power Cables”,” Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency of Germany)
19. BSH (2015). “Guidance for use of the BSH standard “Standard Design-Minimum requirements concerning the constructive design of offshore structures within the Exclusive Economic Zone (EEZ)”,” Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency of Germany)
20. Bensoula, M., Missoum, H., and Bendani, K. (2015). “Critical undrained shear strength of loose-medium sand-silt mixtures under monotonic loadings,” Journal of Theoretical and Applied Mechanics, Vo. 53, No. 2, pp. 331-344.
21. Boulanger, R. W., and Ziotopoulou, K. (2015). “PM4Sand (Version 3): A sand plasticity model for earthquake engineering applications (Report No. UCD/CGM-15/01),” Center for Geotechnical Modeling Department of Civil and Environmental Engineering, University of California, Davis, Calif.
22. Bian, X., Jiang, J., Jin, W., Sun, D., Li, W., and Li, X. (2016). “Cyclic and postcyclic triaxial testing of ballast and subballast,” Journal of Materials in Civil Engineering, Vol. 28, No. 7, 04016032.
23. Boulanger, R. W., and Ziotopoulou, K. (2018). “PM4Silt (Version 1): a silt plasticity model for earthquake engineering applications (Report No. UCD/CGM-18/01),” Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA, 108 pp.
24. Casagrande, A. (1936). “Characteristics of cohesionless soils affecting the stability of slopes and earth fills,” Journal of the Boston Society of Civil Engineers, Vol. 23, No. 1, pp. 13-32.
25. Castro, G. (1969). “Liquefaction of Sand,” Ph.D. Thesis, Division of Engineering and Applied Physics, Harvard University, Cambridge.
26. Castro, G. (1975). “Liquefaction and cyclic mobility of saturated sands,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 101, No. GT6, pp. 551-569.
27. Chang, N. Y., Hsieh, N. P., Samuelson, D. L., and Horita, M. (1982). “Effect of Frequency on Liquefaction Potential of Saturated Monterey No. O Sand,” In Computational Methods and Experimental Measurements, pp. 433-446.
28. Chang, C. S., Kuo, C. L., and Selig, E. T. (1983). “Pore pressure development during cyclic loading,” Journal of Geotechnical Engineering, Vol. 109, No. 1, pp. 103-107.
29. Chung, R. M., Yokel, F. Y., and Drnevich, V. P. (1984). “Evaluation of dynamic properties of sands by resonant column testing,” Geotechnical Testing Journal, Vol. 7, No. 2, pp. 60-69.
30. Chazallon, C., Hornych, P., and Mouhoubi, S. (2006). “Elastoplastic model for the long-term behavior modeling of unbound granular materials in flexible pavements,” International Journal of Geomechanics, Vol. 6, No. 4, pp. 279-289.
31. Corti, R., Diambra, A., Wood, D. M., Escribano, D. E., and Nash, D. F. (2016). “Memory surface hardening model for granular soils under repeated loading conditions.” Journal of Engineering Mechanics, Vol. 142, No. 12, 04016102.
32. Chen, W. B., Yin, J. H., Feng, W. Q., Borana, L., and Chen, R. P. (2018). “Accumulated Permanent Axial Strain of a Subgrade Fill under Cyclic High-Speed Railway Loading,” International Journal of Geomechanics, Vol. 18, No. 5, 04018018.
33. De Alba, P., Chan, C. K., & Seed, H. B. (1976). “Determination of soil liquefaction characteristics by large-scale laboratory tests,” Rept No EERC 75-14, Earthquake Eng Res Center, Univ of California, Berkeley.
34. Datta, M., Rao, G. V., and Gulhati, S. K. (1980). “Development of pore water pressures in a dense calcareous sand under repeated compressive stress cycles,” In Proceedings, International Symposium on Soils under Cyclic and Transient Loading. University College of Swansea, UK, pp. pp. 33-47.
35. Diyaljee, V. A., and Raymond, G. P. (1982). “Repetitive load deformation of cohesionless soil,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, No. 10, pp. 1215-1229.
36. Das, B. M. (2010). “Principles of geotechnical engineering,” Stamford, Conn. : Cengage Learning.
37. Della, N., Arab, A., and Belkhatir, M. (2011). “Drained and undrained shear strenght of silty sand: effect of the reconstruction methods and other parameters,” Geologia Croatica, Vol. 64, No. 2, pp. 163-171.
38. Finn, W. D. L., Lee, M. K. W., and Martin, G. R. (1977). “An Effective Stress Model For Liquefaction,” American Society of Civil Engineers, Journal of the Geotechnical Engineering Division, Vol. 103, No. 6, pp. 517-533.
39. Finn, W. D. L., Lee, M. K. W., Maartman, C. H., and Lo, R. (1978). “Cyclic pore pressures under anisotropic conditions,” In From Volume I of Earthquake Engineering and Soil Dynamics--Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, June 19-21, Pasadena, California. Sponsored by Geotechnical Engineering Division of ASCE in cooperation with: (No. Proceeding).
40. Fattah, M., Al-Neami, M., and Jajjawi, N. (2014). “Prediction of liquefaction potential and pore water pressure beneath machine foundations,” Open Engineering, Vol. 4, No. 3, pp. 226-249.
41. Goldscheider, M., and Gudehus, G. (1976). “Einige Bodenmechanische Probleme bei Küsten-und Offshore-Bauwerken,” Tagungsband Baugrundtagung. (in German)
42. Goldscheider, M. I. C. H. A. E. L. (1977). “Shakedown and Incremental Collapse in Dry Sand Bodies,” Proc. of Dynamical Methods in Soil and Rock Mech. Karlsruhe, Dutschland, 2.
43. Gaskin, P. N., Raymond, G. P., Addo-Abedi, F. Y., and Lau, J. S. (1979). “Repeated compressive loading of a sand,” Canadian Geotechnical Journal, Vol.16, No.4, pp. 798-802.
44. Güttler, U. (1984). “Beurteilung des Steifigkeits- und Nachverdichtungsverhaltens von ungebundenen Mineralstoffen,” Ph.D. thesis, Ruhr-Universität, Bochum, Heft 8. (in German)
45. Gidel, G., Hornych, P., Breysse, D., and Denis, A. (2001). “A new approach for investigating the permanent deformation behaviour of unbound granular material using the repeated loading triaxial apparatus,” Bulletin des laboratoires des Ponts et Chaussées, No. 233, pp. 5-21. (in French)
46. Gotschol, A. (2002). “Veränderlich elastisches und plastisches Verhalten nichtbindiger Böden und Schotter unter zyklisch-dynamischer Beanspruchung,” Ph.D. thesis, Universität Gh. Kassel, Kassel, Heft 12. (in German)
47. Hanzawa, H., Itoh, Y., and Suzuki, K. (1979). “Shear characteristics of a quick sand in the Arabian Gulf,” Soils and Foundations, Vol. 19, No, 4, pp. 1-15.
48. Hettler, A. (1987). “Schotter triaxialversuche mit statischem und zyklischem Belastungsverlauf,” Eisenbahntechnische Rundschau, Vol.36, pp.399-405.
49. Hornych, P. (1993). “Étude des déformations permanentes sous chargements répétés de trois graves non traitées,” Bulletin de liaison des Laboratoires des Ponts et Chaussées, No.184, pp. 45-55. (in French)
50. Huurman, M. (1996a). “Resilient behaviour of concrete block pavements and the granular materials used in the substructure,” Proceedings Pave Israel, Vol. 96, pp. 239-251.
51. Huurman, M. (1996b). “Rut development in concrete block pavements due to permanent strain in the substructure,” Proceedings Pave Israel, Vol. 96, pp. 293-303.
52. Ishibashi, I., Sherif, M. A., and Tsuchiya, C. (1977). “Pore-pressure rise mechanism and soil liquefaction,” Soils and Foundations, Vol. 17, No. 2, pp. 17-27.
53. Indraratna, B., Thakur, P. K., and Vinod, J. S. (2009). “Experimental and numerical study of railway ballast behavior under cyclic loading,” International Journal of Geomechanics, Vol. 10, No. 4, pp. 136-144.
54. Jessberger, H. L., and Dörr, R. (1981). “Bahavior of Dynamically Loaded granular Materials,” Proceeding of the tenth International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Vol.1, pp.655-671.
55. Jing, P., Nowamooz, H., and Chazallon, C. (2018). “Permanent deformation behaviour of a granular material used in low-traffic pavements,” Road Materials and Pavement Design, Vol. 19, No. 2, pp. 289-314.
56. Kramer, S. L., and Seed, H. B. (1988). “Initiation of soil liquefaction under static loading conditions,” Journal of Geotechnical Engineering, Vol. 114, No. 4, pp. 412-430.
57. Kagawa W. S., Booker, J. R. and Carter, J. P. (1991). “Residual strain in calcareous sand due to irregular cyclic loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 117, No. 2, pp. 201-218.
58. Kempfert, H. G., and Hu, Y. (1999a). “Prediction on the long-term behavior of subsoils under high-speed railways,” Proceedings of the Twelfth European Conference on Soil Mechanics and Geotechnical Engineering, Amsterdam, Niederlande, pp. 1823-1828.
59. Kempfert, H. G., and Hu, Y. (1999b). “Numerical modeling of the deformation in railway foundation-A case study,” Numerical models in geomechanics: proceedings of the seventh International Symposium on Numerical Models in Geomechanics, Graz, Austria, pp.669-674.
60. Kuo, Y. S. (2008). “On the behavior of large-diameter piles under cyclic lateral load,” Ph.D. thesis, Lebniz Universität Hannover,Hannover, Heft 65.
61. Korkiala-Tanttu, L. (2009). “Calculation method for permanent deformation of unbound pavement materials,” Ph.D. thesis, Helsinki University, Espoo, VTT publication.
62. Kanth, A. and Maheshwari, B. K. (2017). “Effect of Frequency of Loading on Pore Pressure in Solani Sand,” Indian Geotechnical Conference 2017, Guwahati, India, pp. 1-3.
63. Larew, H. G., and Leonards, G. A. (1962). “A strength Criterion for repeated loads,” Highway research board, Vol. 41, pp. 529-556.
64. Lee, K. L., and Albaisa, A. (1974). “Earthquake induced settlements in saturated sands,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 100, No. GT4, pp. 387-406.
65. Lentz, R. W., and Baladi, G. Y. (1980). “Simplified procedure to characterize permanent strain in sand subjected to cyclic loading,” International Symposium on Soils under Cyclic and Transient Loading, Swansea, pp.89-95.
66. Lentz, R. W., and Baladi, G. Y. (1981). “Prediction of Permanent Strain in Sand Subjected to Cyclic Loading,” Transportation Research Record, No. 749, pp.54-58.
67. Lekarp, F., Richardson, I., R., and Dawson, A. (1996). “Influences on permanent deformation behavior of unbound granular materials,” Transportation Research Record, No. 1547, pp.68-75.
68. Lackenby, J., Indraratna, B., McDowell, G., and Christie, D. (2007). “Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading,” Ge'otechnique, Vol. 57, No. 6, pp. 527–536.
69. LeBlanc, C., Houlsby, G. T., and Byrne, B. W. (2010). “Response of stiff piles in sand to long-term cyclic lateral loading,” Géotechnique, Vol. 60, No. 2, pp. 79-90.
70. Li, L.L., Dan, H.B., and Wang, L.Z. (2011). “Undrained behavior of natural marine clay under cyclic loading,” Ocean Engineering, Vol. 38, No. 16, pp. 1792-1805.
71. Leib, A. R. (2015). “Effect of Particle Morphology on the Deformation Behavior of Sand under Monotonic Loading Conditions,” University of Tennessee, Knoxville, Master thesis.
72. Liu, E., Lai, Y., Liao, M., Liu, X., and Hou, F. (2016). “Fatigue and damage properties of frozen silty sand samples subjected to cyclic triaxial loading,” Canadian Geotechnical Journal, Vol. 53, No. 12, pp. 1939-1951.
73. Melan, E. (1938). “Zur Plastizität des räumlichen Kontinuums,” Ingenieurarchiv, Vol. 9, pp.116-126. (in German)
74. Morgan, J. R. (1966). “The Response of Granular Materials to Repeated Loading,” Proceedings of the Australia Road Research Board, 3rd Conference, Sydney, Australia, pp.1178-1189.
75. Martin, G. R., Finn, W. D. L., and Seed, H. B. (1975). “Fundamentals of Liquefaction under Cyclic Loading,” American Society of Civil Engineers, Journal of the Geotechnical Engineering Division, Vol. 101, No. 5, pp. 423-438.
76. McDonald L. M., and Raymond, G. P. (1984). “Repetitve load testing: reversal or rotation,” Canadian Geotechnical Journal, Vol.21, No.3, pp. 456-474.
77. National Research Council, NRC. (1985). “Liquefaction of soils during earthquakes,” Committee on Earthquake Engineering Research.
78. Niemunis, A., Wichtmann, T., and Triantafyllidis, T. (2005). “A high-cycle accumulation model for sand,” Computers and geotechnics, Vol. 32, No. 4, pp. 245-263.
79. Nieto Leal, A., and Kaliakin, V. N. (2016). “General response observed in cyclically loaded cohesive soils,” Ciencia e Ingeniería Neogranadina, Vol. 26, No. 1, pp. 21-39.
80. Peck, R. B., Hanson, W. E., Thornburn, T. H. (1953). “Foundation engineering,” Wiley: New York, United States.
81. Pumphrey, N. D., and Lentz, R. W. (1986). “Deformation analyses of Florida highway subgrade sand subjected to repeated laod triaxial tests,” Transportation Research Record, No. 1089, pp.49-56.
82. Paute, J. L., Hornych, P., and Benaben, J. P. (1996). “Repeated load triaxial testing of granular materials in the French network of laboratories des Pont et Chaussées,” Flexible Pavements, proceedings of the European Symposium EUROFLEX 1993, Lisbon, Portugal, pp. 53-64.
83. Peralta, P. (2010). “Investigations on the behavior of large diameter piles under Long-Term lateral cyclic loading in cohesionless soil,” Dissertation.
84. Raymond G.P. and Diyaljee V.A. (1979). “Railroad ballast load ranking classification,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No.10 pp. 1133-1153.
85. Robertson, P. K., Campanella, R. G., Gillespie, D., and Greig, J. (1986). “Use of piezometer cone data,” In Use of in situ tests in geotechnical engineering, ASCE, pp. 1263-1280.
86. Robertson, P. K. (1990). “Soil classification using the cone penetration test,” Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 151-158.
87. Robertson, P. K. (2010). “Soil behaviour type from the CPT: an update,” In 2nd international symposium on cone penetration testing, USA, pp. 9-11.
88. Rimoy, S. P., and Jardine, R. J. (2011). “On strain accumulation in a silica sand under creep and low level cyclic loading,” In Deformation Characteristics of Geomaterials: Proceedings of the Fifth International Symposium on Deformation Characteristics of Geomaterials, IS-Seoul 2011, 1-3 September 2011, Seoul, Korea, p. 463.
89. Seed, B., and Lee, K. L. (1966). “Liquefaction of saturated sands during cyclic loading,” Journal of Soil Mechanics & Foundations Div, 92(ASCE# 4972 Proceeding).
90. Silver, M. L., and Seed, H. B. (1971). “Volume changes in sands during cyclic loading,” Journal of Soil Mechanics & Foundations Div.
91. Seed, H. B., Martin, P. P., and Lysmer, J. (1976). “Pore-water pressure changes during soil liquefaction,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 102, No. GT4, pp. 323-346.
92. Stewart, H. E. (1986). “Permanent strains from cyclic variable-amplitude loadings,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 112, No. 6, pp. 646-660.
93. Sweere, G.T.H. (1990). “Unbound Granular Bases for Roads,” Ph.D. dissertation, University of Delft, Delft, Netherlands.
94. Salgado, R., Bandini, P., and Karim, A. (2000). “Shear strength and stiffness of silty sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 5, pp. 451-462.
95. Suiker, A. S. J., Selig, E. T., and Frenkel, R. (2005). “Static and cyclic triaxial testing of ballast and subballast,” Journal of the Geotechnical and Geoenvironmental Engineering Division, ASCE, Vol. 131, No. 6, pp. 771-782.
96. Sitharam, T. G., and Govindaraju, L. (2007). “Pore pressure generation in silty sands during cyclic loading,” Geomechanics and Geoengineering: An International Journal, Vol. 2, No. 4, pp. 295-306.
97. Shajarati, A., Sørensen, K. W., Nielsen, S. K., and Ibsen, L. B. (2012). “Behaviour of cohesionless soils during cyclic loading,” Aalborg: Department of Civil Engineering, Aalborg University. (DCE Technical Memorandum No 14)
98. Sun, Y., Xiao, Y., and Hanif, K. F. (2015). “Fractional order modelling of the cumulative deformation of granular soils under cyclic loading,” Acta Mechanica Solida Sinica, Vol. 28, No. 6, pp. 647-658.
99. Sun, Q. D., Indraratna, B., and Nimbalkar, S. (2016). “Deformation and degradation mechanisms of railway ballast under high frequency cyclic loading,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 142, No. 1, 04015056.
100. Taylor, D. W. (1948). “Fundamentals of Soil Mechanics,” John Wiley and Sons. Inc., New York, pp. 441-448.
101. Timmerman, D. H., and Wu, T H. (1969). “Behavior of dry sands under cyclic loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95, No. 4, pp. 1097-1112.
102. Tokimatsu, K., and Seed, H. B. (1987). “Evaluation of settlements in sands due to earthquake shaking,” Journal of Geotechnical Engineering, Vol. 113, No. 8, pp. 861-878.
103. Thiel, G. (1988). “Steifigkeit und Dämpfung von wassergsättigtem Feinsand unter Erdbenbelastung,” Ph.D. thesis, Ruhr-University, Bochum, Heft14. (in German)
104. Thakur, P. K., Vinod, J. S., and Indraratna, B. (2013). “Effect of confining pressure and frequency on the deformation of ballast,” Geotechnique: international journal of soil mechanics, Vol. 63, No. 9, pp. 786-790.
105. Ueng, T. S., and Lee, C. J. (1990). “Deformation behavior of sand under shear-particulate approach,” Journal of Geotechnical Engineering, Vol. 116, No. 11, pp. 1625-1640.
106. Ueng, T. S., Wu, M. C., Lin, C. Y., and Yu, R. Y. (2000). “Pore water pressure changes in sands under earthquake loading,” In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, Vol. 30.
107. Vasko, A. (2015). “An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests,” The George Washington University, Master dissertation.
108. Wong, Robert T., H. Bolton Seed, and Clarence K. Chan. “Cyclic loading liquefaction of gravelly soils” Journal of Geotechnical and Geoenvironmental Engineering 101. ASCE# 11396 Proceeding.
109. Wolff, H., and Visser, A. T. (1994). “Incorporating Elasto-Plasticity in Granular Pavement Design,” Proceedings of the Institute of Civil Engineers-Transport, Vol. 105, No. 4, pp. 259-272.
110. Werkmeister, S. (2004). “Permanent Deformation Behaviour of Unbound Granular Materials in Pavement Constructions,” Ph.D. thesis, Technischen Universität Dresden, Dresden, Heft 12.
111. Wichtmann, T., Niemunis, A., and Triantafyllidis, T. (2005). “Strain accumulation in sand due to cyclic loading: drained triaxial tests,” Soil Dynamics and Earthquake Engineering, Vol. 25, No. 12, pp. 967-979.
112. Wichtmann, T., Niemunis, A., and Triantafyllidis, T. (2009). “Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands,” Soils and Foundations, Vol. 49, No. 5, pp. 711-728.
113. Wang, B. H., Chen, G. X., and Jin, D. D. (2010). “Pore water pressure increment model for saturated Nanjing fine sand subject to cyclic loading,” Journal of Earthquake Engineering and Engineering Vibration, Vol. 9, No. 4, pp. 569-576.
114. Wichtmann, T., Niemunis, A., and Triantafyllidis, T. (2015). “Improved simplified calibration procedure for a high-cycle accumulation model,” Soil Dynamics and Earthquake Engineering, Vol. 70, pp. 118-132.
115. WindEurope (2019). Offshore Wind in Europe: Key trends and statistics 2018. Via internet(https://windeurope.org/about-wind/statistics/offshore/european-offshore-wind-industry-key-trends-statistics-2018/)
116. Youd, T. L. (1970). “Densification and shear of sand during vibration,” Journal of the Soil Mechanics and Foundations Division, Vol. 96, No. 3, pp. 863-880.
117. Ziotopoulou, K., and Boulanger, R. W. (2016). “Plasticity modeling of liquefaction effects under sloping ground and irregular cyclic loading conditions,” Soil Dynamics and Earthquake Engineering, Vol. 84, pp. 269-283.
118. 工業技術研究院 (2018)「離岸風場區塊開發海域環境建構計畫」,經濟部能源局,台灣。
119. 中能發電股份有限公司 (2017),「離岸風場區塊開發29號風場海域調查工程地質調查工作成果報告書」。
120. 台灣海洋科技研究中心 (2012),「彰濱海域地質鑽探試驗分析工作報告書」。
121. 台灣電力股份有限公司 (2014),「離岸風力發電第一期計畫」。
122. 台灣電力股份有限公司 (2018),「離岸風力發電第二期計畫可行性研究」。
123. 林啓聖、郭玉樹 (2017),「雙向反覆外力加載對土壤勁度衰減模型參數之影響探討」,2017台灣風能研討會,彰化,台灣。
124. 林筠蓁 (2019) 「彰化地區離岸風場三維工程地質模型研究」,碩士論文,國立成功大學水利及海洋工程學系,台南。
125. 海峽風電股份有限公司 (2017a),「海峽離岸風力發電計畫(27號風場)環境影響說明書」。
126. 海峽風電股份有限公司 (2017b),「海峽離岸風力發電計畫(28號風場)環境影響說明書」。
127. 張倖偉(2017) 「彰濱外海離岸風場地工模型雛形建立」,碩士論文,國立成功大學水利及海洋工程學系,台南。
128. 盧泰維 (2018),「無凝聚性土壤於反覆作用力下之回彈行為研究」,碩士論文,國立成功大學水利及海洋工程學系,台南。
129. 簡連貴、邱淑宜、馮宗緯、林俶寬 (2014),「離岸風力計畫海域大地工程調查~以福海離岸風場為例」,地工技術,142期,59-68頁。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2030-02-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2030-02-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw