系統識別號 U0026-3001201914532800
論文名稱(中文) 脊髓損傷及帕金森氏症大鼠之尿道外括約肌肌電圖分析
論文名稱(英文) Analysis of External Urethral Sphincter Electromyography in Spinal Cord Injury and Parkinson's Disease Rats
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 107
學期 1
出版年 107
研究生(中文) 林敬庭
研究生(英文) Ching-Ting Lin
學號 P86054111
學位類別 碩士
語文別 英文
論文頁數 38頁
口試委員 指導教授-陳家進
中文關鍵字 神經性膀胱功能異常  尿道外括約肌  肌電圖  中位頻率 
英文關鍵字 neurogenic bladder  external urethral sphincter  electromyography  median frequency 
中文摘要 神經性膀胱功能障礙為一種由於中樞神經或周圍神經損傷所引發的膀胱功能障礙,通常會影響逼尿肌及尿道括約肌的自主性收縮,進而導致膀胱的不活動或是過度活動以及膀胱與尿道括約肌之間的協調。為了瞭解脊髓損傷或帕金森氏症所引發的膀胱功能障礙之症狀,利用動物代謝籠收集排尿量、排尿週期,以及尿道外括約肌肌電圖,並計算出肌電圖之中位頻率以比較正常組、脊髓損傷組及帕金森氏症組三組之間的差異性。代謝籠實驗之數據結果顯示,脊損損傷大鼠的排尿周期較短且每次排尿量也低於正常大鼠,此一現象為膀胱與尿道外括約肌之間的協調異常所導致;帕金森氏症大鼠由於逼尿肌的過度活動,顯示出比腦損傷前更高的排尿頻率。在尿道外括約肌肌電圖方面,正常大鼠之括約肌肌電圖訊號會隨著膀胱收縮的發生同時增加其幅度,且瞬時中位頻率降低,然而此一現象並沒有在脊髓損傷大鼠及帕金森氏症大鼠之肌電圖中發生。脊髓損傷大鼠在L6脊髓處表現出更強的CGRP反應,是由於C-纖維異常敏感並引起病理性神經元反應。帕金森氏症大鼠中CGRP的反應顯著增加則表明逼尿肌過度活動的機制可能性。
英文摘要 Neurogenic bladder dysfunction, also simply referred to as neurogenic bladder, is bladder dysfunction due to damage of the central nervous system or peripheral nerves, which often affects detrusor muscle and urethral sphincters, resulting in underactivity or over activity of bladder and coordination between bladder and urinary sphincters. In order to investigate the neurogenic bladder dysfunction, voiding duration by metabolic cage test and electromyography of external urethral sphincter (EUS-EMG) were collected from normal, spinal cord injury (SCI) and Parkinson’s disease (PD) animal models. Median frequency (MDF) of EUS-EMG was obtained to compare the differences among rodents animal before and after spinal cord or dopaminergic neuron was damaged. Bladder tissues for all three groups were also harvested and perfused for histological investigations.
From voiding functions, SCI rats show shorter voiding duration and lower voided volume than normal rats which may result from abnormal coordination between bladder contraction and EUS relaxation. Control group showed increased EUS-EMG and decreased instantaneous median frequency accompanied with the beginning of bladder contraction. However, there is no similar result from SCI group because of the abnormal bladder contraction while voiding. SCI rats showed stronger expression of calcitonin-gene related protein (CGRP) at L6 because C-fibers become abnormally sensitive and cause pathological neuronal responses. For Parkinsonian group, PD rats shows higher voiding frequency after brain lesion than the baseline because of the detrusor overactivity. MDF of EUS-EMG shows no significant change during voiding as well as SCI group. The significantly increased expression of CGRP in PD rats indicated the possible mechanisms of exhibiting detrusor overactivity.
From the MDF of EUS-EMG, we can observe the instant change during the micturition which might be a viable way to distinguish the healthy and injured animals. However, more evidences in each of diseased groups should be investigated to confirm the reliability of MDF changes of EUS-EMG in the future.
論文目次 摘要 I
Abstract II
Contents IV
List of Figure VI
List of Table VII
Chapter 1 Introduction 1
1.1 Urethral sphincters and the neurogenic bladder dysfunction 1
1.2 Neurogenic bladder in spinal cord injury patients 3
1.3 Neurogenic bladder in Parkinson’s disease patients 5
1.4 Electromyography of external urethral sphincter 5
1.5 Aims of the study 8
Chapter 2 Materials and Methods 9
2.1 Animal preparations 9
2.2 Surgical procedures of SCI rat model 9
2.3 Surgical procedures of PD rat model 10
2.4 Metabolic cage test 12
2.5 Urodynamic recording 13
2.6 Tissue organ bath 15
2.6.1 Solutions preparation 15
2.6.2 Experimental setup 16
2.6.3 Tissue 16
2.6.4 Contraction of tissue 17
2.7 Immunohistochemistry 17
2.7.1 Preparation 18
2.7.2 Day 1 18
2.7.3 Day 2 18
2.8 Statistical analysis 19
Chapter 3 Results 20
3.1 Spinal cord injury 20
3.1.1 Urine collection in SCI rats 20
3.1.2 EUS-EMG analysis in SCI rats 21
3.1.3 Bladder contractility in SCI rats 26
3.1.4 Expression of CGRP in SCI rats 28
3.2 Parkinson’s disease 29
3.2.1 Urine collection in PD rats 29
3.2.2 EUS-EMG analysis in PD rats 30
3.2.3 Expression of CGRP in PD rats 32
Chapter 4 Discussion and Conclusion 33
References 36
參考文獻 Andersson, K. E., & Olshansky, B., Treating patients with overactive bladder syndrome with antimuscarinics: heart rate considerations, BJU Int, 100(5), 1007-1014, 2007.
Artim, D. E., Kullmann, F. A., Daugherty, S. L., Bupp, E., Edwards, C. L., & de Groat, W. C., Developmental and spinal cord injury-induced changes in nitric oxide-mediated inhibition in rat urinary bladder, Neurourol Urodyn, 30(8), 1666-1674, 2011.
Balestra, G., Knaflitz, M., & Merletti, R. (1988, 4-7 Nov. 1988). Comparison between myoelectric signal mean and median frequency estimates. Paper presented at the Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Birder, L., de Groat, W., Mills, I., Morrison, J., Thor, K., & Drake, M., Neural control of the lower urinary tract: peripheral and spinal mechanisms, Neurourol Urodyn, 29(1), 128-139, 2010.
Chang, H. Y., Cheng, C. L., Chen, J. J., & de Groat, W. C., Serotonergic drugs and spinal cord transections indicate that different spinal circuits are involved in external urethral sphincter activity in rats, Am J Physiol Renal Physiol, 292(3), F1044-1053, 2007.
Cheng, C. L., & de Groat, W. C., The role of capsaicin-sensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats, Exp Neurol, 187(2), 445-454, 2004.
D'Amico, S. C., & Collins, W. F., 3rd, External urethral sphincter motor unit recruitment patterns during micturition in the spinally intact and transected adult rat, J Neurophysiol, 108(9), 2554-2567, 2012.
D'Amico, S. C., Schuster, I. P., & Collins, W. F., 3rd, Quantification of external urethral sphincter and bladder activity during micturition in the intact and spinally transected adult rat, Exp Neurol, 228(1), 59-68, 2011.
de Groat, W. C., Integrative control of the lower urinary tract: preclinical perspective, Br J Pharmacol, 147 Suppl 2, S25-40, 2006.
Doheny, E. P., Lowery, M. M., Fitzpatrick, D. P., & O'Malley, M. J., Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles, J Electromyogr Kinesiol, 18(5), 760-770, 2008.
Fowler, C. J., Griffiths, D., & de Groat, W. C., The neural control of micturition, Nat Rev Neurosci, 9(6), 453-466, 2008.
Kadekawa, K., Majima, T., Shimizu, T., Wada, N., de Groat, W. C., Kanai, A. J., Goto, M., Yoshiyama, M., Sugaya, K., & Yoshimura, N., The role of capsaicin-sensitive C-fiber afferent pathways in the control of micturition in spinal-intact and spinal cord-injured mice, Am J Physiol Renal Physiol, 313(3), F796-F804, 2017.
Kruse, M. N., Belton, A. L., & de Groat, W. C., Changes in bladder and external urethral sphincter function after spinal cord injury in the rat, Am J Physiol, 264(6 Pt 2), R1157-1163, 1993.
Kullmann, F. A., Daugherty, S. L., de Groat, W. C., & Birder, L. A., Bladder smooth muscle strip contractility as a method to evaluate lower urinary tract pharmacology, J Vis Exp(90), e51807, 2014.
LaPallo, B. K., Wolpaw, J. R., Chen, X. Y., & Carp, J. S., Long-term recording of external urethral sphincter EMG activity in unanesthetized, unrestrained rats, Am J Physiol Renal Physiol, 307(4), F485-497, 2014.
Lenehan, B., Street, J., Kwon, B. K., Noonan, V., Zhang, H., Fisher, C. G., & Dvorak, M. F., The epidemiology of traumatic spinal cord injury in British Columbia, Canada, Spine (Phila Pa 1976), 37(4), 321-329, 2012.
M'Dahoma, S., Bourgoin, S., Kayser, V., Barthelemy, S., Chevarin, C., Chali, F., Orsal, D., & Hamon, M., Spinal cord transection-induced allodynia in rats--behavioral, physiopathological and pharmacological characterization, PLoS One, 9(7), e102027, 2014.
Marieb, E. N., & Hoehn, K., Human anatomy & physiology, 9th edition, United States of America, © Pearson Education, Inc., 979-982, 2013.
McGee, M. J., Amundsen, C. L., & Grill, W. M., Electrical stimulation for the treatment of lower urinary tract dysfunction after spinal cord injury, J Spinal Cord Med, 38(2), 135-146, 2015.
Ng, Y. K., de Groat, W. C., & Wu, H. Y., Smooth muscle and neural mechanisms contributing to the downregulation of neonatal rat spontaneous bladder contractions during postnatal development, Am J Physiol Regul Integr Comp Physiol, 292(5), R2100-2112, 2007.
Ogawa, T., Seki, S., Masuda, H., Igawa, Y., Nishizawa, O., Kuno, S., Chancellor, M. B., de Groat, W. C., & Yoshimura, N., Dopaminergic mechanisms controlling urethral function in rats, Neurourol Urodyn, 25(5), 480-489, 2006.
Phinyomark, A., Phukpattaranont, P., & Limsakul, C., Feature reduction and selection for EMG signal classification, Expert Systems with Applications, 39(8), 7420-7431, 2012.
Pullen, A. H., Tucker, D., & Martin, J. E., Morphological and morphometric characterisation of Onuf's nucleus in the spinal cord in man, J Anat, 191 ( Pt 2), 201-213, 1997.
Sakakibara, R., Tateno, F., Nagao, T., Yamamoto, T., Uchiyama, T., Yamanishi, T., Yano, M., Kishi, M., Tsuyusaki, Y., & Aiba, Y., Bladder function of patients with Parkinson's disease, Int J Urol, 21(7), 638-646, 2014.
Shiina, T., Shima, T., Masuda, K., Hirayama, H., Iwami, M., Takewaki, T., Kuramoto, H., & Shimizu, Y., Contractile properties of esophageal striated muscle: comparison with cardiac and skeletal muscles in rats, J Biomed Biotechnol, 2010, 459789, 2010.
Spinal cord injury: facts and figures at a glance, National Spinal Cord Injury Statistical Center, Retrieved 2018, from the World Wide Web: https://www.nscisc.uab.edu/
Stoffel, J. T., Detrusor sphincter dyssynergia: a review of physiology, diagnosis, and treatment strategies, Transl Androl Urol, 5(1), 127-135, 2016.
Stulen, F. B., & DeLuca, C. J., Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity, IEEE Trans Biomed Eng, 28(7), 515-523, 1981.
Tai, C., Roppolo, J. R., & de Groat, W. C., Spinal reflex control of micturition after spinal cord injury, Restor Neurol Neurosci, 24(2), 69-78, 2006.
Taweel, W. A., & Seyam, R., Neurogenic bladder in spinal cord injury patients, Res Rep Urol, 7, 85-99, 2015.
Ungerstedt, U., Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour, Acta Physiol Scand Suppl, 367, 49-68, 1971.
Winge, K., Werdelin, L. M., Nielsen, K. K., & Stimpel, H., Effects of dopaminergic treatment on bladder function in Parkinson's disease, Neurourol Urodyn, 23(7), 689-696, 2004.
Yoshimura, N., Kuno, S., Chancellor, M. B., De Groat, W. C., & Seki, S., Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway, Br J Pharmacol, 139(8), 1425-1432, 2003.
Zhang, Z. G., Liu, H. T., Chan, S. C., Luk, K. D., & Hu, Y., Time-dependent power spectral density estimation of surface electromyography during isometric muscle contraction: methods and comparisons, J Electromyogr Kinesiol, 20(1), 89-101, 2010.
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-02-13起公開。

  • 如您有疑問,請聯絡圖書館