進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3001201909574200
論文名稱(中文) 過渡金屬氧化物/還原氧化石墨烯奈米複合材料於鋰離子電池負極材料之研究
論文名稱(英文) The Investigation of TMOs/rGO Nanocomposite as an Anode for Lithium Ion Batteries
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 翁紹婕
研究生(英文) Shao-Chieh Weng
學號 N58011201
學位類別 博士
語文別 中文
論文頁數 130頁
口試委員 指導教授-黃肇瑞
共同指導教授-張家欽
召集委員-李志浩
口試委員-劉全璞
口試委員-方冠榮
口試委員-林士剛
口試委員-許文東
口試委員-王聖璋
中文關鍵字 氧化鋅  二氧化錳  四氧化三錳  還原氧化石墨烯  奈米複合材料  負極材料  鋰離子電池 
英文關鍵字 self-assemble hollow sphere structure  ZnO/rGO nanocomposite  MnO2/rGO nanocomposite  Mn3O4/rGO nanocomposite  lithium-ion batteries 
學科別分類
中文摘要 高能量儲能系統可使元件往輕薄短小發展,是未來發展趨勢。然而負極材料中,過渡金屬氧化物雖具有較高的電容量,但充放電體積膨脹過大,產生電極粉化問題。然而,當過渡金屬氧化物具有奈米結構時,體積膨脹和極片粉化問題將得以大大改善。
本研究之第一部分實驗為結合氧化鋅(理論電容量:978 mAh g-1)與氧化石墨烯(graphene oxide),形成ZnO/rGO自組裝中空球 (self-assembled hollow-sphere) 奈米複合(nanocomposite)材料。藉由電化學測試後,由實驗結果顯示,無論是電容量、循環穩定性以及材料內部阻抗等電池性質,複合材料顯現之性質皆優於氧化石墨烯,且經過20圈充放電測試後,ZnO/rGO奈米複合材料仍維持605.36 mAh g-1的電容量,為氧化石墨烯第20圈電容量133.82 mAh g-1的4倍。從結果得知當過渡金屬化物與氧化石墨烯結合,的確可以提升電池表現。
因此,第二部分實驗則將過渡金屬氧化物改為理論電容量更高的二氧化錳(理論電容量:1232 mAh g-1),並合成二氧化錳(MnO2)奈米針(nanoneedle)、MnO2/rGO奈米複合材料,再將MnO2/rGO奈米複合材料經過還原處理得到四氧化三錳/還原氧化石墨烯(Mn3O4/rGO)六角片狀奈米複合材料(hexagonal-flat structure nanocomposite)。由於三種材料之結構皆具有奈米尺度,因此,提供更多有利於鋰離子擴散的途徑,使鋰離子與材料有更多反應位置,進而提供更高的電容量,又因複合材料之協同效應(synergistic effect),使得複合材料維持了較穩定的循環壽命及高電容量維持率(retention)。
本研究結合氧化鋅/氧化錳與還原氧化石墨烯,製備具奈米結構之複合材料並應用於鋰離子電池負極。由於當過渡金屬氧化物與還原氧化石墨烯結合之後,還原氧化石墨烯扮演緩衝層以及導電層的角色,減緩過渡金屬氧化物在鋰化/去鋰化(lithiation/de-lithiation)過程中過渡金屬氧化物的體積變化,並提升材料導電性;而過渡金屬氧化物則能夠提高整體電容量,並且減緩還原氧化石墨烯重複再堆疊(re-stacking)的現象發生。兩者結合所產生的協同效應(Synergistic effect),使二氧化錳/還原氧化石墨烯(MnO2/rGO)奈米複合材料以及四氧化三錳/還原氧化石墨烯(Mn3O4/rGO)奈米複合材料經過250圈充放電測試後,仍維持高循環穩定性以及高達387.15 mAh g-1以及631.49 mAh g-1之電容量;在快速(2C, 2464 mAg-1)充放電的過程中,兩材料分別維持443.05 mAh g-1和549.35 mAh g-1的高電容量,具有應用在鋰離子電池負極材料中的潛能。
英文摘要 We investigate the lithium storage properties of two kinds of materials as anode for LIB: graphene oxide (GO) and self-assembled hollow-sphere zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite. GO is obtained by Hummers method controlled by the various process parameters. The ZnO/rGO hollow sphere nanocomposite is synthesized by a low temperature (95 °C) chemical solution reaction. For ZnO/rGO composite, the capacity is increased remarkably as compared to GO sheets, and this is due to the synergistic effects of both the components in the composite. The GO acts as a conductive buffer layer that promotes the conductivity, and suppresses the volume expansion of ZnO during the charge/discharge process. ZnO/rGO hollow sphere structure nanocomposite has higher capacity 605.36 mAh g-1, which is 4.5 times higher than GO (133.82 mAh g-1), after 20 cycles. The capacity variation with the charge-discharge rate of ZnO/rGO nanocomposite showed a higher capacity (299.95 mAhg-1 at 1700 mAg-1) than GO (20.09 mAhg-1 at 1488 mAg-1) after 32 cycles.
In the second part of the study, we synthesized the high performance of the MnO2/rGO nad Mn3O4/rGO nanocomposite as an anode electrode of a lithium-ion battery. The composite is synthesized by a low temperature (83 °C) chemical solution reaction, and shows relatively high specific capacities (660 mAh g-1) after 50 cycles. For MnOx/rGO composites, the cycling stability is increased remarkably as compared to that seen with individual MnOx, and this is due to the synergistic effects of both the components in the composite. The rGO acts as a conductive buffer layer that suppresses the volume change of MnOx, and simultaneously promotes the conductivity of MnOx. The functional groups of graphene oxide facilitate the formation of MnOx at low temperature and connecting with MnOx, thus improving the capacity and cyclic stability.
In this study, zinc oxide/manganese oxide and reduced graphene oxide were combined to prepare composites with nanostructures and applied to lithium ion battery anodes. When the transition metal oxide is combined with the reduced graphene oxide, the reduced graphene oxide acts as a buffer layer and a conductive layer, supressing the volume change of the manganese oxide during the lithiation/delithiation process and improving the conductivity of the material. And the transition metal oxide can increase the overall capacity and supress the phenomenon of re-stacking situation of reduced graphene oxide. MnO2/rGO nanocomposite and Mn3O4/rGO nanocomposite can not only maintain the capacity of 387.15 mAh g-1 and 631.49 mAh g-1 after 250 cycles charge/discharge test, respectively, but also maintaining 443.05 mAh g-1 and 549.35 mAh g-1, respectively when charge/discharge with high charge current density 2464 mAg-1 due to the synergistic effect.
論文目次 總目錄
中文摘要 III
Extend abstract V
誌謝 XLII
圖目錄 XLVIII
表目錄 LII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 3
2.1 鋰離子電池之發展與演進 3
2.2 鋰離子電池組成及工作原理 5
2.3 鋰離子電池負極材料簡介 10
2.3.1 碳材 11
2.3.2 過渡金屬氧化物/石墨烯奈米複合材料簡介 14
2.3.3 過渡金屬氧化物與(氧化)石墨烯奈米複合材料在鋰離子電池中的應用 18
2.3.3.1 氧化鋅/(氧化)石墨烯奈米複合材料在鋰離子電池負極材料之應用 18
2.3.3.2 氧化錳/(氧化)石墨烯奈米複合材料在鋰離子電池負極材料之應用 27
第三章 實驗方法與步驟 38
3.1 實驗材料 38
3.2 實驗設備 39
3.3 實驗設計 39
3.4 活性材的製備 40
3.4.1 氧化石墨烯(Graphene oxide)的製備 40
3.4.2 氧化鋅/還原氧化石墨烯自組裝中空球(ZnO/rGO self-assembled hollow sphere nanocomposites)奈米複合材料的製備 41
3.4.3 二氧化錳(MnO2)與MnO2/rGO奈米複合材料之製備 42
3.4.4 四氧化三錳/還原氧化石墨烯(Mn3O4/rGO)自組裝六角片狀(Self-assembled hexagonal plate shape)奈米複合材料之製備 42
3.5 材料鑑定及分析 43
3.5.1 X-ray繞射分析儀 (X-ray diffraction spectrometer: XRD) 43
3.5.2 電子能譜化學分析儀 (Electron Spectroscopy for Chemical Analysis: ESCA) 44
3.5.3 拉曼光譜分析儀 (Raman spectroscopy,Raman) 45
3.5.4 高解析場發射掃描式電子顯微鏡 (High resolution field emission scanning electron microscopy,FE-SEM) 47
3.5.5 高解析分析電子顯微鏡 (Ultrahigh Resolution Analytical Electron Spectroscopy,HR-AEM) 48
3.6 鈕扣型半電池組裝及測試 49
3.6.1 極片製備流程 49
3.6.2 鈕扣型半電池組裝 50
3.6.3 半電池充放電測試 51
3.5.4 交流阻抗分析 52
第四章 結果與討論 54
4.1 ZnO/rGO 自組裝中空球奈米複合材料 54
4.1.1 活性材料之形貌與結構分析 54
4.1.1.1 XRD 結構及定性分析 54
4.1.1.2 表面形貌及顯微結構之FESEM分析 56
4.1.1.3 表面形貌及顯微結構之TEM分析 58
4.1.1.4 碳原子結構之Raman圖譜分析 61
4.1.1.5 材料成分比例之TGA分析 64
4.1.2 半電池的組裝與測試 65
4.1.2.1 充放電測試 65
4.1.2.2 循環穩定性之充放電測試 67
4.1.2.3 不同充放電速率測試(C-rate test) 70
4.1.2.4 交流阻抗分析 72
4.2 MnO2、MnO2/rGO及Mn3O4/rGO奈米複合材料 74
4.2.1 活性材料之形貌與結構分析 74
4.2.1.1 XRD 結構及定性分析 74
4.2.1.2 鍵結能貢獻及變化之ESCA分析 77
4.2.1.3 表面形貌與顯微結構之SEM分析 83
4.2.1.4 表面形貌與顯微結構之TEM分析與電子繞射圖譜分析 86
4.2.1.5 材料成分比例之TGA分析 91
4.2.2 鈕扣型半電池之組裝及測試 93
4.2.2.1 充放電測試 93
4.2.2.2 循環伏安法分析(Cyclic voltammetry analysis) 98
4.2.2.3 循環壽命之充放電測試 104
4.2.2.4 不同充放電速率測試 108
4.2.2.5 交流阻抗(Electrochemistry Impedance Spectroscopy)分析測試 111
第五章 結論 117
Future work 120
參考文獻 121
參考文獻 參考文獻
[1] Y. Sun, X. Hu, W. Luo, and Y. Huang, "Self-assembled hierarchical MoO2-Graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries," ACS Nano, vol. 5, no. 9, pp. 7100–7107, 2011.
[2] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-9, Oct 22 2004.
[3] M. D. Bhatt and C. O'Dwyer, "Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes," Phys Chem Chem Phys, vol. 17, no. 7, pp. 4799-844, Feb 21 2015.
[4] C. M. Hayner, X. Zhao, and H. H. Kung, "Materials for rechargeable lithium-ion batteries," Annu Rev Chem Biomol Eng, vol. 3, pp. 445-71, 2012.
[5] M.-K. Song, S. Park, F. M. Alamgir, J. Cho, and M. Liu, "Nanostructured electrodes for lithium-ion and lithium-air batteries the latest developments, challenges, and perspectives," Materials Science and Engineering R, vol. 72, pp. 203–252, 2011.
[6] M. V. Reddy, G. V. Subba Rao, and B. V. Chowdari, "Metal oxides and oxysalts as anode materials for Li ion batteries," Chem Rev, vol. 113, no. 7, pp. 5364-457, Jul 10 2013.
[7] Y. Wang and G. Cao, "Developments in nanostructured cathode materials for high‐performance lithium‐ion batteries," Adv. Mater., vol. 20, pp. 2251–2269, 2008.
[8] 李彥槿,“鋰電池用負極材料產業概況”,台灣工業銀行,2012年,1-3頁。
[9] D. Larcher, S. Beattie, M. Morcrette, K. Edstro¨m, J.-C. Jumasc, and J.-M. Tarascon, "Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries," J. Mater. Chem., vol. 17, pp. 3759–377, 2007.
[10] G. Wang, X. Shen, J. Yao, and J. Park, "Graphene nanosheets for enhanced lithium storage in lithium ion batteries," CARBON, vol. 47, pp. 2049 –2053, 2009.
[11] J. W. Fergus, "Recent developments in cathode materials for lithium ion batteries," Journal of Power Sources, vol. 195, pp. 939–954, 2010.
[12] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191.
[13] M. Marcinek, L. J. Hardwick, T. J. Richardson, X. Song, and R. Kostecki, "Microwave plasma chemical vapor deposition of nano-structured Sn C composite thin-film anodes for Li-ion batteries," Journal of Power Sources, vol. 173, pp. 965–971, 2007.
[14] E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, and I. Honma, "Large reversible li storage of graphene nanosheet families for use in rechargeable lithium ion batteries," Nano Lett., vol. 8, no. 8, pp. 2277-2282, 2008.
[15] J. Yao, X. Shen, B. Wang, H. Liu, and G. Wang, "In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries," Electrochemistry Communications, vol. 11, pp. 1849–1852, 2009.
[16] C. Wang, D. Li, C. O. Too, and G. G. Wallace, "Electrochemical properties of graphene paper electrodes used in lithium batteries," Chem. Mater., vol. 21, pp. 2604–2606, 2009.
[17] J. Shen et al., "Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets," Chem. Mater., vol. 21, pp. 3514–3520, 2009.
[18] A. G. Pandolfo and A. F. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of Power Sources, vol. 157, pp. 11–27, 2006.
[19] B. C. Brodie, "On the atomic weight of graphite," Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259, 1859.
[20] J. Illiam S. Hummers and R. E. Offeman, "Preparation of graphitic oxide," p. 1339, 195s.
[21] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature, vol. 458, no. 7240, pp. 877-80, Apr 16 2009.
[22] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature Nanotechnology, vol. 4, pp. 217–224, 2009.
[23] H. Bai, C. Li, and G. Shi, "Functional composite materials based on chemically converted graphene," Adv Mater, vol. 23, no. 9, pp. 1089-115, Mar 4 2011.
[24] X. Gao, J. Jang, and S. Nagase, "Hydrazine and thermal reduction of graphene oxide reaction mechanisms, product structures, and reaction design," J. Phys. Chem. C, vol. 114, pp. 832–842, 2010.
[25] S. Stankovich et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558–1565, 2007.
[26] 邱泰傑, "銀奈米線與還原性氧化石墨烯的合成及其透明導電薄膜的特性分析," 國立臺南大學材料科學系,2011年,碩士論文。
[27] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nat Nanotechnol, vol. 3, no. 2, pp. 101-5, Feb 2008.
[28] H.-J. Shin et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Adv. Funct. Mater., vol. 19, pp. 1987–1992, 2009.
[29] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nat Nanotechnol, vol. 4, no. 1, pp. 25-9, Jan 2009.
[30] S. Pei, J. Zhao, J. Du, W. Ren, and H.-M. Cheng, "Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids," CARBON, vol. 48, pp. 4466 –4474, 2010.
[31] C. X. Guo and C. M. Li, "A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance," Energy Environ. Sci., vol. 4, pp. 4504–4507, 2011.
[32] X. W. Lou, D. Deng, J. Y. Lee, J. Feng, and L. A. Archer, "Self-supported formation of needlelike CO3O4 nanotubes and their application as lithium-ion battery electrodes," Adv. Mater., vol. 20, pp. 258–262, 2008.
[33] C. Ban et al., "Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate li-ion anode," Adv Mater, vol. 22, no. 20, pp. E145-9, May 25 2010.
[34] P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon, "High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications," Nat Mater, vol. 5, no. 7, pp. 567-73, Jul 2006.
[35] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," NATURE, vol. 407, no. 28 pp. 496-499.
[36] W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo, and L.-J. Wan, "Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries," Adv. Funct. Mater., vol. 18, pp. 3941–3946, 2008.
[37] N. Spinner, L. Zhang, and W. E. Mustain, "Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM," J. Mater. Chem. A, vol. 2, no. 6, pp. 1573–1992, 2014.
[38] R. Amade, E. Jover, B. Caglar, T. Mutlu, and E. Bertran, "Optimization of MnO2 vertically aligned carbon nanotube composite for supercapacitor application," Journal of Power Sources, vol. 196, pp. 5779–5783, 2011.
[39] S. TRASATT, "Physical electrochemistry of ceramic oxides," Ekrrrochimica Acra, vol. 36, no. 2, pp. 225-241, 1991.
[40] Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, "Graphene metal oxide composite electrode materials for energy storage," Nano Energy, vol. 1, pp. 107–131, 2012.
[41] H. Li et al., "Facile synthesis of ZnO nanoparticles on nitrogen-doped carbon nanotubes as high-performance anode material for lithium-ion batteries," Materials (Basel), vol. 10, no. 10, Sep 21 2017.
[42] M. Jayalakshmi and K. Balasubramanian, "Simple capacitors to supercapacitors - an overview," Int. J. Electrochem. Sci., vol. 3, pp. 1196 - 1217, 2008.
[43] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries a review," Energy Environ. Sci., vol. 4, pp. 3243–3262, 2011.
[44] J. Wu, C. Chen, Y. Hao, and C. Wang, "Enhanced electrochemical performance of nanosheet ZnO/reduced graphene oxide composites as anode for lithium-ion batteries," Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 468, pp. 17–21, 2015.
[45] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015.
[46] P. Balaya, H. Li, L. Kienle, and J. Maier, "Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity," Adv. Funct. Mater., vol. 13, no. 8, pp. 621-625, 2003.
[47] S.-C. Weng, S. Brahma, C.-C. Chang, and J.-L. Huang, "Synthesis of MnOx reduced graphene oxide nanocomposite as an anode electrode for lithium-ion batteries," Ceramics International, vol. 43, pp. 4873–4879, 2017.
[48] Z. L. Wang, "Zinc oxide nanostructures growth, properties and applications," J. Phys.: Condens. Matter, vol. 16, pp. R829–R858, 2004.
[49] B. P. Zhang, N. T. Binh, K. Wakatsuki, C. Y. Liu, Y. Segawa, and N. Usami, "Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect," APPLIED PHYSICS LETTERS, vol. 86, p. 032105, 2005.
[50] T. Zhai et al., "A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors," Sensors (Basel), vol. 9, no. 8, pp. 6504-29, 2009.
[51] Y. Zhang, H. Li, L. Pan, T. Lu, and Z. Sun, "Capacitive behavior of graphene–ZnO composite film for supercapacitors," Journal of Electroanalytical Chemistry, vol. 634, pp. 68–71, 2009.
[52] M. Liu, C.-Y. Nam, C. T. Black, J. Kamcev, and L. Zhang, "Enhancing water splitting activity and chemical stability of zinc oxide nanowire photoanodes with ultrathin titania shells," J. Phys. Chem. C, vol. 117, p. 13396−13402, 2013.
[53] M. S. Al-Ruqeishi, T. Mohiuddin, B. Al-Habsi, F. Al-Ruqeishi, A. Al-Fahdi, and A. Al-Khusaibi, "Piezoelectric nanogenerator based on ZnO nanorods," Arabian Journal of Chemistry, vol. In Press, 2016.
[54] W. Zhang, L. Du, Z. Chen, J. Hong, and L. Yue, "ZnO nanocrystals as anode electrodes for lithium-ion batteries," Journal of Nanomaterials, vol. 2016, pp. 1-7, 2016.
[55] S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, "Graphene oxide/MnO2 nanocomposites for supercapacitors," ACS Nano, vol. 4, no. 5, pp. 2822-2830.
[56] C.-T. Hsieh, C.-Y. Lin, Y.-F. Chen, and J.-S. Lin, "Synthesis of ZnO@Graphene composites as anode materials for lithium ion batteries," Electrochimica Acta, vol. 111, pp. 359– 365, 2013.
[57] M. Yu et al., "ZnO graphene nanocomposite fabricated by high energy ball milling with greatly enhanced lithium storage capability," Electrochemistry Communications, vol. 34, pp. 312–315, 2013.
[58] T. Lu et al., "Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors," Journal of Alloys and Compounds, vol. 509, pp. 5488–5492, 2011.
[59] B. Erjavec, R. Dominko, P.Umek, S. Sturm, A. Pintar, and M. Gaberscek, "Tailoring nanostructured TiO2 for high power Li-ion batteries," Journal of Power Sources, vol. 189, pp. 869–874, 2009.
[60] Y. Fan et al., "Co3O4-coated TiO2 nanotube composites synthesized through photo-deposition strategy with enhanced performance for lithium-ion batteries," Electrochimica Acta, vol. 94, pp. 285– 293, 2013.
[61] D. I. Son et al., "Emissive ZnO-graphene quantum dots for white-light-emitting diodes," Nat Nanotechnol, vol. 7, no. 7, pp. 465-71, May 27 2012.
[62] X. Chen, X. Jing, J. Wang, L. Liu, J. Liu, and D. Song, "Self-assembly of ZnO nanoparticles into hollow microspheres via a facile solvothermal route and their application as gas sensor," CrystEngComm, vol. 15, pp. 7243–7249, 2013.
[63] F. Jiang et al., "Bi-component MnO/ZnO hollow microspheres embedded in reduced graphene oxide as electrode materials for enhanced lithium storage," Ceramics International, vol. In Press, 2016.
[64] B. Zhao et al., "Bivalent tin ion assisted reduction for preparing graphene SnO2 composite with good cyclic performance and lithium storage capacity," Electrochimica Acta, vol. 56, pp. 7340– 7346, 2011.
[65] S.-M. Li et al., "Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors," Journal of Power Sources, vol. 225, pp. 347-355, 2013.
[66] Y. Q. Chang, X. Y. Xu, X. H. Luo, C. P. Chen, and D. P. Yu, "Synthesis and characterization of Mn3O4 nanoparticles," Journal of Crystal Growth, vol. 264, pp. 232–236, 2004.
[67] J. Du, Y. Gao, L. Chai, G. Zou, Y. Li, and Y. Qian, "Hausmannite Mn3O4 nanorods synthesis, characterization and magnetic properties," Nanotechnology, vol. 17, pp. 4923–4928, 2006.
[68] L. Zhang, Q. Zhou, Z. Liu, X. Hou, Y. Li, and Y. Lv, "Novel Mn3O4 micro-octahedra promising cataluminescence sensing material for acetone," Chem. Mater., vol. 21, pp. 5066–5071, 2009.
[69] Y. Zhanga et al., "A green hydrothermal approach for the preparation of graphene α-MnO2 3D network as anode for lithium ion battery," Electrochimica Acta, vol. 108, pp. 465– 471, 2013.
[70] X. Shen, T. Qian, J. Zhou, N. Xu, T. Yang, and C. Yan, "Highly flexible full lithium batteries with self-knitted alpha-MnO2 fabric foam," ACS Appl Mater Interfaces, vol. 7, no. 45, pp. 25298-305, Nov 18 2015.
[71] C.-C. Hou, S. Brahma, S.-C. Weng, C.-C. Chang, and J.-L. Huang, "Facile, low temperature synthesis of SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries," Applied Surface Science, vol. 413, pp. 160–168, 2017.
[72] Q.-P. Luo, X.-Y. Yu, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, and C.-Y. Su, "Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity," J. Phys. Chem. C, vol. 116, p. 8111−8117, 2012.
[73] Z. Zhan, L. Zheng, Y. Pan, G. Sun, and L. Li, "Self-powered, visible-light photodetector based on thermally reduced graphene oxide–ZnO (rGO–ZnO) hybrid nanostructure," J. Mater. Chem., vol. 22, pp. 2589-2595, 2012.
[74] Y. Zou, Z. Qi, W. Jiang, J. Duan, and Z. Ma, "MWCNTs enhanced ZnO nanoparticles as anode for lithium ion batteries," Materials Letters, vol. 199, pp. 57–60, 2017.
[75] C. Kim et al., "Graphene oxide assisted synthesis of self-assembled zinc oxide for lithium-ion battery anode," Chem. Mater., vol. 28, p. 8498−8503, 2016.
[76] F. Li et al., "Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries," Journal of Alloys and Compounds, vol. 577, pp. 663–668, 2013.
[77] H.-J. Yang, S.-C. Lim, S.-Y. He, and H.-Y. Tuan, "Ultralong mesoporous ZnO nanowires grown via room temperature self-assembly of ZnO nanoparticles for enhanced reversible storage in lithium ion batteries," RSC Adv., vol. 5, pp. 33392–33399, 2015.
[78] H. Wan, P. Han, S. Ge, F. Li, S. Zhang, and H. Li, "Development zinc oxide–cotton fibers as anode materials for lithium-ion batteries," Int. J. Electrochem. Sci., vol. 13, pp. 4115 – 4122, 2018.
[79] N.-J. Song and C. Ma, "A green synthesis of Mn3O4 graphene nanocomposite as anode," Int. J. Electrochem. Sci., vol. 13, pp. 452 – 460, 2018.
[80] M.-J. Xiao, F.-L. Zhu, G.-R. Wang, C.-Y. Duan, Y.-S. Meng, and Y. Zhang, "One-step synthesis of Co@C composite as high-performance anode material for lithium-ion batteries," Int. J. Electrochem. Sci., vol. 13, pp. 762 – 770, 2018.
[81] Z. Liu et al., "Low temperature self-assembled synthesis of hexagonal plate-shape Mn3O4 3D hierarchical architectures and their application in electrochemical capacitors," RSC Adv., vol. 5, pp. 54867–54872, 2015.
[82] X. Ma et al., "Facile fabrication of gold coated nickel nanoarrays and its excellent catalytic performance towards sodium borohydride electro-oxidation," Applied Surface Science, vol. 414, pp. 353–360, 2017.
[83] S. e. Sariog˘lan, "Recovery of palladium from spent acrivated carbon-supported palladium catalysts," Platinum Metals Rev., vol. 57, no. 4, pp. 289–296, 2013.
[84] H. Liu, Z. Hu, Y. Su, H. Ruan, R. Hu, and L. Zhang, "MnO2 nanorods/3D-rGO composite as high performance anode materials for Li-ion batteries," Applied Surface Science, vol. 392, pp. 777–784, 2017.
[85] Rusi and S. R. Majid, "Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors," Sci Rep, vol. 5, p. 16195, Nov 5 2015.
[86] G. Zhao et al., "Synthesis and lithium-storage properties of MnO/reduced graphene oxide composites," J. Mater. Chem. A, vol. 3, pp. 297–303, 2015.
[87] C. Yuan, Y. Zhang, Y. Pan, X. Liu, G. Wang, and D. Cao, "Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery," Electrochimica Acta, vol. 116, pp. 404– 412, 2014.
[88] R. C. Longo et al., "Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations," Phys Chem Chem Phys, vol. 16, no. 23, pp. 11218-27, Jun 21 2014.
[89] X. Fang et al., "Electrode reactions of manganese oxides for secondary lithium batteries," Electrochemistry Communications, vol. 12, pp. 1520–1523, 2010.
[90] X. Guo et al., "A nanoporous metal recuperated MnO2 anode for lithium ion batteries," Nanoscale, vol. 7, no. 37, pp. 15111-6, Oct 7 2015.
[91] Y. Liu, R. Wang, and X. Yan, "Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor," Sci Rep, vol. 5, p. 11095, Jun 8 2015.
[92] S. Park, G. J. Sun, C. Jin, H. W. Kim, S. Lee, and C. Lee, "Synergistic effects of a combination of Cr2O3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors," ACS Appl Mater Interfaces, vol. 8, no. 4, pp. 2805-11, Feb 3 2016.
[93] E. Lee et al., "Enhanced Gas-Sensing Performance of GO/TiO2 Composite by Photocatalysis," Sensors (Basel), vol. 18, no. 10, Oct 5 2018.
[94] C. G. Silva, L. M. P.-Martinez, and S. M.- Torres, "When carbon meets light synergistic effect between carbon," Bol. Grupo Español Carbón, vil. 40, pp. 28-35.
[95] N. A. Zubir, C. Yacou, J. Motuzas, X. Zhang, and J. C. Diniz da Costa, "Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction," Sci Rep, vol. 4, p. 4594, Apr 4 2014.
[96] F. Li, X. Jiang, J. Zhao, and S. Zhang, "Graphene oxide a promising nanomaterial for energy and environmental applications," Nano Energy, vol. 16, pp. 488–515, 2015.
[97] R.-C. Lee, Y.-P. Lin, Y.-T. Weng, H.-A. Pan, J.-F. Lee, and N.-L. Wu, "Synthesis of high-performance MnOx-carbon composite as lithium-ion battery anode by a facile co-precipitation method effects of oxygen," Journal of Power Sources, vol. 253, pp. 373-380, 2014.
[98] N. Wang, Y. Zhai, X. Ma, and Y. Qian, "Rationally designed hierarchical MnO2@NiO nanostructures for improved lithium ion storage," RSC Adv., vol. 5, pp. 61148–61154, 2015.
[99] M.-S. Wu, P.-C. J. Chiang, J.-T. Lee, and J.-C. Lin, "Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries," J. Phys. Chem. B, vol. 109, pp. 23279-23284, 2005.
[100] G. Jian, Y. Xu, L.-C. Lai, C. Wang, and M. R. Zachariah, "Mn3O4 hollow spheres for lithium-ion batteries with high rate and capacity," J. Mater. Chem. A, vol. 2, pp. 4627–4632, 2014.
[101] J. Chen et al., "Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries," Ceramics International, vol. 43, pp. 4655–4662, 2017.
[102] Q. Su, S. Wang, G. Du, B. Xu, S. Ma, and L. Shang, "Microstructure evolution and conversion mechanism of Mn3O4 under electrochemical cyclings," J. Phys. Chem. C, vol. 122, p. 2475−2480, 2018.
[103] A. Pramanik, S. Maiti, MonjoySreemany, and S. Mahanty, "Rock-salt templated Mn3O4 nanoparticles encapsulated in a mesoporous 2D carbon matrix a high rate 2 vanode for lithium-ion batteries with extraordinary cycling stability," ChemistrySelect, vol. 2, pp. 7854–7864, 2017.
[104] D. Andre, H. Hain, P. Lamp, F. Maglia, and B. Stiaszny, "Future high-energy density anode materials from an automotive application perspective," J. Mater. Chem. A, vol. 5, pp. 17174–17198, 2017.
[105] J. Li et al., "Improved Li-ion diffusion process in TiO2 rGO anode for lithium-ion battery," Journal of Alloys and Compounds, vol. 727, pp. 998-1005, 2017.
[106] L. Feng et al., "MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery," Nanoscale Res Lett, vol. 9, no. 1, p. 290, 2014.
[107] B. Li, G. Rong, Y. Xie, L. Huang, and C. Fen, "Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries," Inorg. Chem., vol. 45, p. 6404−6410, 2006.
[108] J. Chen et al., "Electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries," Electrochimica Acta, vol. 142 pp. 152–156, 2014.
[109] L. Li, A. R. Raji, and J. M. Tour, "Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries," Adv Mater, vol. 25, no. 43, pp. 6298-302, Nov 20 2013.
[110] Y. Jiang et al., "Morphology and crystal phase evolution induced performance enhancement of MnO2 grown on reduced graphene oxide for lithium ion batteries," J. Mater. Chem. A, vol. 4, pp. 2643–2650, 2016.
[111] J. Zhao, Z. Tao, J. Liang, and J. Chen, "Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable li-ion batteries," Crystal Growth & Design, vol. 8, no. 8, pp. 2799–2805, 2008.
[112] K. Wen, G. Chen, F. Jiang, X. Zhou, and J. Yang, "A facile approach for preparing MnO2-graphene composite as anode material for lithium-ion batteries," Int. J. Electrochem. Sci., vol. 10, pp. 3859 - 3866, 2015.
[113] L. Xing, C. Cui, C. Ma, and X. Xue, "Facile synthesis of α-MnO2 graphene nanocomposites and their high performance as lithium-ion battery anode," Materials Letters, vol. 65, pp. 2104–2106, 2011.
[114] M. H. Alfaruqi et al., "A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries," Chemical Physics Letters, vol. 650, pp. 64–68, 2016.
[115] X. Wang and Y. Li, "Rational synthesis of α-MnO2 single-crystal nanorods," CHEM. COMMUN., vol. 2002, pp. 764-765, 2002.
[116] S. Devaraj and N. Munichandraiah, "Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties," J. Phys. Chem. C, vol. 112, pp. 4406-4417, 2008.
[117] J. Li, B. Xi, Y. Zhu, Q. Li, Y. Yan, and Y. Qian, "A precursor route to synthesize mesoporous γ-MnO2 microcrystals and their applications in lithium battery and water treatment," Journal of Alloys and Compounds, vol. 509, pp. 9542– 9548, 2011.
[118] I. Nam, N. D. Kim, G.-P. Kim, J. Park, and J. Yi, "One step preparation of Mn3O4/graphene composites for use as an anode in Li ion batteries," Journal of Power Sources, vol. 244, pp. 56-62, 2013.
[119] N. Lavoie, P. R. L. Malenfan, F. M. Courtel, Y. Abu-Lebdeh, and I. J. Davidson, "High gravimetric capacity and long cycle life in Mn3O4/graphene platelet LiCMC composite lithium-ion battery anodes," Journal of Power Sources, vol. 213, pp. 249-254, 2012.
[120] Z.-H. Wang, L.-X. Yuan, Q.-G. Shao, F. Huang, and Y.-H. Huang, "Mn3O4 nanocrystals anchored on multi-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries," Materials Letters, vol. 80, pp. 110–113, 2012.
[121] L.-L. Wu, D.-L. Zhao, X.-W. Cheng, Z.-W. Ding, T. Hu, and S. Meng, "Nanorod Mn3O4 anchored on graphene nanosheet as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance," Journal of Alloys and Compounds, vol. 728, pp. 383-390, 2017.
[122] C. Wang, L. Yin, D. Xiang, and Y. Qi, "Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries," ACS Appl Mater Interfaces, vol. 4, no. 3, pp. 1636-42, Mar 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw