進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3001201815535000
論文名稱(中文) 添加氣體燃料至柴油引擎中之排放污染減量
論文名稱(英文) Pollution Reduction by Adding Gaseous Fuels in the Diesel Engine
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 106
學期 1
出版年 106
研究生(中文) 蔡展豪
研究生(英文) Chan-Hao Tsai
學號 P56051133
學位類別 碩士
語文別 英文
論文頁數 74頁
口試委員 指導教授-吳義林
口試委員-李文智
口試委員-陳瑞仁
口試委員-王琳麒
口試委員-林聖倫
中文關鍵字 柴油引擎  氣體燃料  粒狀物  多環芳香烴  戴奧辛 
英文關鍵字 diesel engine  gaseous fuel  TPM  PAHs  dioxin 
學科別分類
中文摘要 隨著空氣污染問題日漸受到民眾矚目,其中柴油車所排放的廢氣更在總污染源佔有一定的比例,且石油危機亦為現今熱門議題之一,在柴油車方面,如何減輕其所排放之污染以及替代燃料的發展同時成為了現今最重要課題。
本研究使用四種不同氣體添加燃料,分別為氫氣(H2)、進口天然氣(CH4),國產天然氣(90%CH4,10%CO2)及生質氣(70%CH4,30%CO2),作為重型柴油引擎排放總懸浮微粒及其他污染物之控制技術,探討在各種氣體燃料分別以10%以及20%熱值的比例添加後對重型柴油引擎排放總懸浮微粒及化學特性之影響。結果顯示,以使用純柴油之柴油引擎為基準,在粒狀物方面皆有減量效果,其削減率在42.3%至58.2%之間,減量效果相差不大。在多環芳香烴(PAHs)方面,以添加氫氣後在質量以及毒性方面分別可以減量87.7%至84.4%以及50.0%至59.0%,添入進口天然氣則會造成毒性排放增加,在添加20%進口天然氣時PAHs毒性排放較使用純柴油多了73.8%,添入國產天然氣以及生質氣體則可以使PAHs毒性排放減量。在戴奧辛方面,柴油引擎的尾氣主要皆以PCDF之排放為主,除了添加氫氣後戴奧辛質量排放以及毒性排放方面分別增加16.7%至103%以及32.8%至104%,添加進口天然氣後其戴奧辛毒性排放則可減少10.9%至27.7%,其餘氣體燃料則無明顯改變。
總結可知,添加氣體燃料後,在粒狀物以及多環芳香烴以添加氫氣後減量效果最佳,雖會使戴奧辛排放增加,但若能解決其戴奧辛排放問題,使用氫氣混合柴油燃料則可成為未來能源的替代方案。而氣體添加燃料與其他柴油引擎控制技術相較,其價格低廉,但氣體燃料的設備成本較高。此外,未來若要廣泛應用,須透過引擎運轉及燃燒條件之優化,提高污染物削減率以確保其減量之效果。
英文摘要 With the air pollution problem attracting more and more people's attention, the exhaust gas emitted by diesel vehicles occupies a certain proportion of the total pollution sources. And the oil crisis is also one of the hot topics nowadays. At the same time, it has become the most important issue for diesel vehicles to reduce the pollution they emit and the development of alternative fuels.
In this study, four kinds of gases were used to be adding fuel, namely hydrogen (H2), imported natural gas (CH4), domestic natural gas (90% CH4, 10% CO2) and biogas (70% CH4, 30% CO2) as a heavy-duty diesel engine to release total particle matters and other pollutants control technology and to investigate the effect of various gaseous fuels on the total particulate matters and chemical properties of heavy-duty diesel engines after being added at a ratio of 10% and 20% (heating value) respectively. The results show that compared to the diesel engine with pure diesel, after adding gaseous fuels, the reduction rate of total particulate matter is about 42.3% and 58.2%, respectively, and the reduction effect is similar. In the case of polycyclic aromatic hydrocarbons (PAHs), the addition of hydrogen reduces the PAHs mass and toxicity emission by 87.7% to 84.4% and 50.0% to 59.0%, respectively. Adding imported natural gas will result in increased PAHs toxicity emissions, especially when adding 20% of imported natural gas, the PAHs toxicity emission will increase 73.8% compared to pure diesel. And adding domestic natural gas and biomass gas will reduce the PAHs toxicity emissions. The main composition of dioxin exhaust by diesel engine is PCDF. In addition adding hydrogen, the PCDD/Fs mass emission and toxicity emissions increased by 16.7% to 103% and 32.8% to 104% respectively, while the imported natural gas reduced the PCDD/Fs toxicity emissions of by 10.9% to 27.7% and the remaining gaseous fuels did not change significantly.
It is concluded that after the adding gaseous fuel, the reduction effect of hydrogen on TPM and PAHs is the best, but the dioxin emissions increase. However, if the problem of dioxin emission can be solved, using hydrogen-blended diesel fuel can be an alternative to energy in the future. Although the gaseous fuel equipment costs are higher, but the price of gaseous added fuel is low compared to other diesel engine control technology. In addition, if the adding gaseous fuels is to be widely used in the future, the reduction rate of pollutants should be enhanced through the optimization of engine operation and combustion conditions so as to ensure the reduction rate.
論文目次 摘要 I
Abstract III
Contents III
List of Tables V
List of Figures VI
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Diesel engine 4
2.2 Emission of Particulate Matter 6
2.3 Polycyclic Aromatic Hydrocarbons 7
2.3.1 Characteristic of PAHs 7
2.3.2 Classification of PAHs 10
2.3.3 Sources of PAHs 10
2.3.4 PAHs Formation Mechanism 13
2.3.5 PAHs Impact on Human Health 14
2.4 PCDD/Fs 16
2.4.1 Characteristic of PCDD/Fs 16
2.4.2 Sources of PCDD/Fs 19
2.4.3 PCDD/F Formation Mechanism 20
2.4.4 PCDD/Fs Impact on Human Health 23
2.5 Gaseous Fuels 26
Chapter 3 Experimental Material and Method 28
3.1 Sampling System 28
3.1.1 Diesel Engine Test 28
3.1.2 Engine Loads 31
3.1.3 Gaseous fuels system 32
3.1.4 Particulate Phase Organic Pollution Collection 36
3.1.5 Gas Phase Organic Pollution Collection 36
3.2 Pretreatment and analysis 37
3.2.1 Pretreatment before sampling 37
3.2.2 Pretreatment before analysis 37
Chapter 4 Results and Discussion 40
4.1 PM Emission Factor 40
4.2 PM reduction rate 43
4.3 PAHs Emissions characteristics 46
4.4 PAHs reduction rate 52
4.3 PCDD/F emission characteristics 55
4.4 PCDD/F reduction rate 62
Chapter 5 Conclusions and Suggestions 65
5.1 Conclusions 65
5.2 Suggestions 65
Reference 67
參考文獻 Ballschmiter, K., Zoller, W., Buchert, H., Class (1985), T. F. Z. Analytical Chemistry, Vol. 322, pp. 587.
Barfknecht, T. R. (1983), Progress in Energy and Combustion Science, Vol. 9, pp.199-237.
Cai, Q.Y., Xiao, P.Y., Lü, H., Katsoyiannis, A., Tian, J.J., Zeng, Q.Y. and Mo, C.H. (2014), “Evaluation of car air filters’ efficiency as active samplers for polycyclic aromatic hydrocarbons and heavy metals,” Aerosol Air Qual Res, 14 pp.431-439.
Charles Lafayette Proctor, Lloyd Van Horn Armstrong. (2013), Diesel Engine . from https://www.britannica.com/technology/diesel-engine
Chen, J. W., Wang, S. L., Hsieh, D. P., Yang, H. H., & Lee, H. L. (2012). “Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions,” Sci Total Environ, 417-418, 68-75.
Chen, S. J., Liao, S. H. Jian, W. J, Lin, C. C. (1997),“Partical size distribution of aerosol carbons in ambient air,” Environmental International, 23(4), pp. 475-488.
Chen, W., Han, J., Qin, L., Furuuchi, M. and Mitsuhiko, H. (2014), “The emission characteristics of PAHs during coal and sewage sludge co-combustion in a drop tube Furnace,” Aerosol Air Qual Res, 14 pp.1160-1167.
Chen, Y.; Bi, X.; Mai, B.; Sheng, G.; Fu, J. (2004), “Emission characterization of particulate gaseous phase and size association for polycyclic aromatic hydrocarbons from residential coal combustion“, Fuel, 83, pp.781-790.
Cheruiyot, N.K., Lee, W.J., Mwangi, J.K., Wang, L.C., Lin, N.H., Lin, Y.C., Cao, J., Zhang, R. and ChangChien, G.P. (2015), “An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air,” Aerosol Air Qual Res, 15: pp.2730-2762.
Choi, H.; Harrison, R.; Komulainen, H.; Delgado Saborit, J. (2010). "Polycyclic aromatic hydrocarbons". WHO Guidelines for Indoor Air Quality: Selected Pollutants. Geneva: World Health Organization.
Chuang, S.C., Chen, S.J., Huang, K.L., Chang-Chien, G.P., Wang, L.C. and Huang, Y.C. (2010), “Emissions of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran from motorcycles,” Aerosol Air Qual Res, 10 pp.533-539.
Chuang, S.C., Huang, K.L., Chen, S.J., Wang, L.C., Chang-Chien, G.P. and Tsai, J.H. (2011), “PCDD/F emissions from gasoline and diesel fueled vehicles,” Sustainable Environ. 21 pp.29-36.
Debabrata Barik, S. Murugan (2014),” Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogasediesel in dual fuel mode,” Energy 72 pp.760-771
Dickson, L. C.; Lenoir, D.; Hutzinger, O. (1992), “Quantitative Comparison of de Novo and Formation of Polychlorinated Dibenzo-p-dioxins under Simulated Municipal Solid Waste Incinerator Postcombustion Conditions” Environmental Science and Technology, Vol. 26, pp. 1822-1828,.
Ebert, L.B. (1981), “Polynclear Aromatic Compounds”, American Chemical Society.
Feng Xinliang, Wojciech Pisula, and Klaus Müllen (2009), “Large polycyclic aromatic hydrocarbons: Synthesis and discotic organization,” Pure Appl. Chem., 81(12), pp. 2203-2224.
Frenklach, M.; Clary, D. W.; Yuan T.; Gardine C.W.; Stein, S. E. (1985), “Detailed Kinetic Modeling of Soot Sybposium (International) on Combustion”, The Combustion Institute, Pittsburgh, pp. 887.
Gordan, R.J., Bryan, R. H., (1973). “Patterns in airborne polynuclear hydrocarbon concentrations at four Los Angeles sites”, Environmental Science and Technology, 7 (11), pp.1050-1053.
Harrison, R. M.; Smith, D. J. T.; Luhana, L. (1996), “Source Apportionment of Atmospheric Polynuclear Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K.”, Environmental Science and Technology, Vol. 30, pp.825-832.
Henny, C.J., Kaiser, J.L., Grove, R.A., Bentley, V.R. and Elliott, J.E. (2003), “Biomagnification factors (fish to Osprey eggs from Willamette River, Oregon, U.S.A.) for PCDDs, PCDFs, PCBs and OC pesticides,” Environ. Monit. Assess. 84 pp.275–315.
Karasek, F. W.; Dickson, L. C. (1987), “Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration,” Science, Vol. 237, pp.754.
Katz, M. and Chan, C. (1980), “Comparative Distribution of Eight Polycyclic Aromatic Hydrocarbons in Airbone Particulates Collected by Conventional High-Volume Sampling and by Size Fractionation”, Environmental Science and Technology, Vol. 14, pp. 838-843.
Kerminen Veli-Matti, Timo E. Mäkelä,Christina H. Ojanen, Risto E. Hillamo (1997). “Characterization of the Particulate Phase in the Exhaust from a Diesel Car,” Environ. Sci, 31, pp.1883-1889.
Kim, I.S., J.Y. Lee, and Y.P. Kim. (2013), “Impact of polycyclic aromatic hydrocarbon (PAH) emissions from North Korea to the air quality in the Seoul Metropolitan Area, South Korea.” Atmos. Environ, 70:pp.159–65.
Larsen, R.K., and J.E. Baker. (2003), “Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods,” Environ. Sci. Technol, 37 pp.1873-81.
Lee, W.S., Chang-Chien, G.P., Wang, L.C., Lee, W.J., Tsai, P.J. and Chen, C.K. (2003), “Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from the incinerations of both medical and municipal solid wastes,” Aerosol Air Qual Res, 3 pp.1-6.
Lee, Wen-Jhy, Liow, Ming-Chu, Tsai, Perng-Jy, & Hsieh, Lien-Te. (2002), “Emission of polycyclic aromatic hydrocarbons from medical waste incinerators.” Atmos. Environ., 36, pp.781-790.
Li, W., Wang, C., Wang, H., Chen, J., Shen, H., Shen, G., Huang, Y., Wang, R., Wang, B., Zhang, Y., Chen, H., Chen, Y., Su, S., Lin, N., Tang, J., Li, Q., Wang, X., Liu, J. and Tao, S. (2014), “Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of northern China,” Envoiron. Pollut. 192 pp.83–90.
Lijiang Wei, Peng Geng. (2016),” A review on natural gas/diesel dual fuel combustion, emissions and performance.” Fuel Processing Technology 142 pp.264-278
Liu Yu-Yin (2008), Hazardous air pollutants and biological toxicities of emission from diesel engines running on biodiesels.
Luijk, R., Akkerman, D. M., Slot, P., Olie, K., Kapteijn, F. (1994), “Mechanism of Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in the Catalyzed Combustion of Carbon”, Environmental Science and Technology, Vol. 28, pp.312-321.
Lyyränen, Jussi, Jokiniemi, Jorma, & Kauppinen, Esko, (2002). “The effect of Mg-based additive on aerosol characteristics in medium-speed diesel engines operating with residual fuel oils.” J. Aerosol Sci., 33(7), pp.967-981
Maricq, M. Matti, Chase, Richard E., Xu, Ning, & Laing, Paul M. (2002), “The Effects of the Catalytic Converter and Fuel Sulfur Level on Motor Vehicle Particulate Matter Emissions:  Light Duty Diesel Vehicles.” Environ Sci. Technol., 36(2), pp.283-289.
Masclet P.; Mouvier g. (1986), Nikolaou, K. “Relative Decay Index and Sources of Polycyclic Aromatic Hydrocarbons”, Atmospheric Environment, Vol. 20, pp.439-445.
McKay, G.(2002), “Dioxin Characterisation, Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review”, Chemical Engineering Journal, Vol. 86, pp. 343-368.
Mi, Hsiao-Hsuan, Lee, Wen-Jhy, Chen, Chung-Ban, Yang, Hsi-Hsien, & Wu, Sheng-Jong. (2000). ”Effect of fuel aromatic content on PAH emission from a heavy-duty diesel engine.” Chemosphere, 41(11), pp.1783-1790.
Michael S. Mllllgan, Elmer Altwlcker. (1993),” The Relationship between de Novo Synthesis of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans and Low-Temperature Carbon Gasification in Fly Ash.” Environ. Sci. Technol. 27, pp.1595-1601
Milligan, M. S.; Altwicker, E.(1993), “The Relationship between de Novo Synthesis of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans and Low-Temperature Carbon Gasification in Fly Ash” Environmental Science and Technology, Vol. 27, pp.1595-1601.
Mishra, N., G.A. Ayoko, and L. Morawska. (2015), “Atmospheric polycyclic aromatic hydrocarbons in the urban environment: occurrence, toxicity and source apportionment.” Environ. Pollut, 208 pp.110-17.
Ramdahl, R.; Alfheim, I.; Rustad, S. Olsen, T. (1982), “Chemical and biological characterization of emissions from small residential stoves burning wood and charcoal,” Chemosphere, Vol. 11, pp.601-611.
Ravindra, K., Sokhi, R., Van Grieken, R. (2008), “Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric.” Environment. 42(13) pp.2895-921.
Ravindra, K; Sokhi, R; Van Grieken, R (2008). “Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation,” Atmospheric Environment. 42(13): pp.2895-2921.
Schecter, A., Birnbaum, L., Ryan, J.J. and Constable, J.D. (2006), “Dioxins: An overview,” Environ. Res, 101 pp.419-428.
Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., Wang, B., Zhang, Y., Chen, Y., Lu, Y., Chen, H., Li, T., Sun, K., Li, B., Liu, W.X., Liu, J. and Tao, S. (2013), “Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions,” Environ. Sci. Technol., 47 pp.6415-6424.
Sisovic A, Fugas. M. (1997), “Smoke Concentration as an Indicator of Polycyclic Aromatic Hydrocarbons Levels in the Air”, Environmental Monitoring and Assessment, Vol. 45, No. 2, pp. 201-207.
Soontjens, C. D.; Holmberg, K.; Westerholm, R. N.; Rafter, J. J. (1997), “Characterization of Polycyclic Aromatic Compounds in Diesel Exhaust Particulate Extract Responsible for Aryl Hydrocarbon Receptor Activity”, Atmospheric Enviromnent, Vol. 31, pp. 219-225.
Taiwan EPA (2008). “The Project of Emission Investigation and Draft Control Strategy of Air Toxic Pollutants (Dioxins and Heavy Metals) from the Stationary Sources,” Taiwan EPA.
USEPA. (1987). Locating and Estimating Air Emission from Sources of Polycyclic Organic Matter (POM).
USEPA. (1994a) Combustion Emissions Technical Resource Document (CETRED), Report No. EPA 530-R-94-014, Washington, DC.
USEPA. (1994b) Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds”, EPA/600/Bp-92/001c Estimating Exposure to Dioxin-Like Compounds, EPA/600/6-88/005Cb, Office of Research and Development, Washington, DC.
Vogg, H., Stieglitz, L. (1986), “Thermal Behavior of PCDD/PCDF in Fly Ash Municipal Incinerators” Chemosphere, Vol. 15, pp.1373-1378.
Vogt, R., Kirchner, U., Scheer, V., Hinz, K. P., Trimborn, A., & Spengler, B. (2003). “Identification of diesel exhaust particles at an Autobahn, urban and rural location using single-particle mass spectrometry.” J. Aerosol Sci., 34(3), pp.319-337.
Wey, M. Y.; Shi, J. L.(1997), “Effect of Pressure Fluctuations on PAHs Emission and Combustion Efficiency during Incineration,” Toxicological and Environmental Chemistry, 61(1-4) pp. 83-98.
Wiesenhahn, D. F.; Li, C. P.; Penner, S. S. (1988), “A Simplified Model for Dioxin and Furan Formation in Municipal-waste Incinerators” Energy, Vol. 13 pp. 225-237.
Wu, S.P., Yang, B.Y, Wang, X.H., Yuan, C.S. and Hong, H.S. (2014), “Polycyclic aromatic hydrocarbons in the atmosphere of two subtropical cities in Southeast China: Seasonal variation and gas/particle partitioning,” Aerosol Air Qual. Res, 14 pp.1232-1246.
Chen Y., W. Du, G. Shen, S. Zhuo, X. Zhu, H. Shen, Y. Huang, S. Su, N. Lin, L. Pei, X. Zheng, J. Wu, Y. Duan, X. Wang, W. Liu, M. Wong, S. Tao. (2017), “Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAHs) in rural households: Influence of household cooking energies,” Indoor air, 27(1) pp.169-178.
Yang, C.Y., Chiou, S.L., Wang, J.D. and Guo, Y.L. (2015), “Health related quality of life and polychlorinated biphenyls and dibenzofurans exposure: 30 years follow-up of Yucheng cohort,” Environ. 137 pp.59-64.
Yang, H.H., Lee, W.J., Chen, S.J. and Lai, S.O., (1998). “PAH emission from various industrial stacks,” Journal of Hazardous Materials, 60(2) pp.159-174.
Lai Yi-Chieh, Tsai Cheng-Hsien, Chen Ying-Liang, Chang-Chien Guo-Ping, (2017), “Distribution and Sources of Atmospheric Polycyclic Aromatic Hydrocarbons at an Industrial Region in Kaohsiung, Taiwan,” Aerosol Air Qual Res, 17 pp.776-787.
Zhang, X., Gao, G., Li, L., Wu, Z., Hu, Z. and Deng, J. (2008), “Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil,” SAE Technical Paper 2008-01-1832.
交通部, (2017). http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100
米孝萱, (1998).移動性污染源排放多環芳香烴化合物之特徵. 國立成功大學環境工程學系博士論
張藍萍, (2011).不同控制因素對重型柴油引擎排放毒性汙染物之特徵
黃靖雄, (2008).現代低汙染省油汽車的排放管制與控制技術, 全華出版社
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-12-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw