進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3001201812460600
論文名稱(中文) 紫杉醇於臨床施打計畫下對PC-12類神經細胞形態與黏彈性力學之影響
論文名稱(英文) Effects of Clinical Dosing Schedule of Paclitaxel on Morphology and Viscoelasticity of Living PC-12 Cells
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 106
學期 1
出版年 107
研究生(中文) 林慶政
研究生(英文) Cing-Jheng Lin
學號 N16044420
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-朱銘祥
口試委員-林宙晴
口試委員-沈孟儒
中文關鍵字 紫杉醇  臨床藥物施打計畫  化療引發周邊神經病變  原子力顯微鏡術  細胞黏彈性力學 
英文關鍵字 paclitaxel  clinical dosing schedule  CIPN  AFM  cell viscoelasticity 
學科別分類
中文摘要 癌症是目前人類十大死因之首,而化療於臨床上引起的周邊神經病變常導致病患中止療程而影響療效,所以選擇合適的施打計畫格外重要。本研究利用活體PC-12類神經細胞模擬人體內交感神經細胞在完成3小時與24小時紫杉醇注射後18小時內之形態與黏彈性力學變化,以比較化療施打計劃對病患神經細胞恢復程度的影響。首先由臨床研究所得之血漿內紫杉醇濃度變化估測擴散至神經細胞之濃度,再將濃度衰減曲線以步階下降曲線近似,分別在0、6、12及18小時等時間點,利用倒立式顯微鏡量測活細胞之形貌並利用原子力顯微鏡進行鬆弛試驗以評估黏彈特性。另外,固定不同盤培養皿中細胞並且染色,再以倒立式螢光顯微鏡量測微管分佈。實驗結果顯示,短時(3-hr)注射下軸突較控制組萎縮35.7%且微管分佈不均,而細胞核區之楊氏模數於12小時分別為6小時及18小時的2.3倍和4.2倍。長時(24-hr)注射下,18小時內軸突長度維持穩定但軸突末端多有腫脹現象,而在軸突近端之楊氏模數於12小時為6小時的2.9倍,此外,細胞核至軸突過渡區之結構阻尼於6小時為控制組的1.9倍,且為12小時與18小時的3.1倍與5.5倍。結果顯示長時注射可能由於紫杉醇分子數目較少而無法於6小時穩定所有微管,使得PC-12類神經細胞尚保有軸突順向傳輸功能,且該劑量雖造成軸突腫脹但仍可進一步促進微管聚合,反映病患在長時間注射完成後神經細胞有較佳的恢復能力;短時注射則導致軸突長度縮短且微管聚積於細胞核,以及微管分佈紊亂等不利於神經內分子傳遞的現象,亦即有較嚴重程度的神經病變。綜合以上,PC-12類神經細胞的形貌與黏彈性力學受施打計畫影響,且總劑量相同的條件下,長時間注射的神經細胞有較佳的回復能力及較輕微的神經病變
英文摘要 Chemotherapy treatment of cancer by paclitaxel often results in peripheral neuropathy which is a main reason for patients to withdraw from therapy and reduce the survival rate[1]. The goal of this study is to simulate recovery of autonomic neuron after two clinical paclitaxel dosing schedules, namely 3-hr and 24-hr infusions, via morphology and viscoelasticity studies. Three unit step functions are utilized to approximate the decreasing concentration histories of paclitaxel in patient’s plasma after the infusions. An atomic force microscopy was employed to measure mechanical property and an inverted microscope for morphology of living PC-12 cells every 6 hours for 18 hours. PC-12 cells in another dish were fixed and immunofluorescence images were obtained. The results revealed that axons of the cells treated by 3-hr infusion were shorter 35.7% than the control, while those treated by 24-hr infusion were longer than control. Both schedules increased the elasticity of cell at 12 hour in various regions, nucleus for the 3-hr infusion and proximal axon for the 24-hr infusion. In transition zone, the viscosity of cells treated by 24-hr infusion ascended to 1.9 fold of control at 6 hour. However, cells become more like elastic material later, which may due to the polymerization of microtubule. Immunofluorescence images revealed that microtubule polymerization was disordered for the 3-hr infusion while accumulated in distal axon for the 24-hr infusion. In conclusion, the effects of paclitaxel on PC-12 cell morphology and viscoelasticity are dosing schedule dependent. The neuron cells treated by 24-hr infusion may be recovered better and yielded less neuropathy than those treated by 3-hr infusion.
論文目次 摘要 i
誌謝 x
目錄 xi
圖目錄 xiii
表目錄 xvii
符號表 xviii
第一章 緒論 1
1.1 化療引起之周邊神經病變 1
1.2 太平洋紫杉醇及臨床用藥 4
1.3 細胞力學簡介 5
1.4 研究動機與目的 7
第二章 方法及實驗 8
2.1 PC-12類神經細胞培養與細胞軸突誘導程序 9
2.1.1 PC-12細胞培養 9
2.1.2 PC-12類神經細胞軸突誘發程序 11
2.2 紫杉醇濃度之設計配置 13
2.3 形貌分析 15
2.4 細胞免疫螢光染色與分析 16
2.5 原子力顯微鏡掃描 19
2.5.1 原子力顯微術量測原理 19
2.5.2 原子力顯微鏡硬體架構 20
2.5.3 壓電掃描器潛變模型 22
2.6 PC-12類神經細胞機械性質探測實驗設計 26
2.6.1 活體細胞的前處理 26
2.6.2 鬆弛測試中壓點選取與設計 27
2.6.3 自動化尋找接觸點之方法 29
2. 7 類線性黏彈模型 34
第三章 結果 36
3. 1 PC-12 類神經細胞形貌分析 36
3.1.1 細胞本體面積(As) 36
3.1.2 細胞軸突總長度(L) 38
3.1.3 細胞螢光染色 39
3.2 原子力顯微鏡量測分析 43
3.2.1 壓電致動器潛變模型 43
3.2.2 PC-12類神經細胞形貌掃描與高度分析 47
3.2.3 類線性黏彈理論參數擬合結果 50
第四章 討論 78
4.1 神經生長因子與紫杉醇的拮抗作用 78
4.2 基底效應修正模型適用性 80
4.3 潛變模型修正成效 82
4.4 微管分佈 83
4.5 不同注射計畫下之力學特性與軸突傳輸 87
4.6 結論 90
4.7 建議 91
參考文獻 92
參考文獻 [1] G. S. Bhatnagar B, Goloubeva O, et al, "Chemotherapy dose reduction due to chemotherapy induced peripheral neuropathy in breast cancer patients receiving chemotherapy in the neoadjuvant or adjuvant settings. a single-center experience. ," Springerplus. , vol. 3, no. 1, pp. 1-6, 2014.
[2] M.-F. Carlier, T. L. Hill, and Y. Chen, "Interference of GTP hydrolysis in the mechanism of microtubule assembly: an experimental study," Proceedings of the National Academy of Sciences, vol. 81, no. 3, pp. 771-775, 1984.
[3] O. A. Shemesh and M. E. Spira, "Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy," Acta neuropathologica, vol. 119, no. 2, pp. 235-248, 2010.
[4] R. E. Smith et al., "Randomized trial of 3-hour versus 24-hour infusion of high-dose paclitaxel in patients with metastatic or locally advanced breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-26," Journal of Clinical Oncology, vol. 17, no. 11, pp. 3403-3411, 1999.
[5] T. Ohtsu et al., "Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3-hour infusion versus a 24-hour infusion," Clinical cancer research, vol. 1, no. 6, pp. 599-606, 1995.
[6] Y.-C. Fung, Biomechanics: mechanical properties of living tissues. Springer Science & Business Media, 2013.
[7] N. Gavara and R. S. Chadwick, "Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips," Nature nanotechnology, vol. 7, no. 11, pp. 733-736, 2012.
[8] A. J. Windebank and W. Grisold, "Chemotherapy‐induced neuropathy," Journal of the Peripheral Nervous System, vol. 13, no. 1, pp. 27-46, 2008.
[9] S. Wolf, D. Barton, L. Kottschade, A. Grothey, and C. Loprinzi, "Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies," European journal of cancer, vol. 44, no. 11, pp. 1507-1515, 2008.
[10] K. D. Tanner, J. D. Levine, and K. S. Topp, "Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine‐induced painful neuropathy in rat," Journal of Comparative Neurology, vol. 395, no. 4, pp. 481-492, 1998.
[11] K. D. Tanner, D. B. Reichling, and J. D. Levine, "Nociceptor hyper-responsiveness during vincristine-induced painful peripheral neuropathy in the rat," Journal of Neuroscience, vol. 18, no. 16, pp. 6480-6491, 1998.
[12] N. Alessandri-Haber, O. A. Dina, E. K. Joseph, D. B. Reichling, and J. D. Levine, "Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia," Journal of Neuroscience, vol. 28, no. 5, pp. 1046-1057, 2008.
[13] K. Thibault et al., "Serotonin 5-HT2A receptor involvement and Fos expression at the spinal level in vincristine-induced neuropathy in the rat," Pain, vol. 140, no. 2, pp. 305-322, 2008.
[14] N. Authier, F. Coudore, A. Eschalier, and J. Fialip, "Pain related behaviour during vincristine‐induced neuropathy in rats," Neuroreport, vol. 10, no. 5, pp. 965-968, 1999.
[15] N. Authier, J.-P. Gillet, J. Fialip, A. Eschalier, and F. Coudore, "A new animal model of vincristine-induced nociceptive peripheral neuropathy," Neurotoxicology, vol. 24, no. 6, pp. 797-805, 2003.
[16] N. Kiguchi, T. Maeda, Y. Kobayashi, T. Kondo, M. Ozaki, and S. Kishioka, "The critical role of invading peripheral macrophage-derived interleukin-6 in vincristine-induced mechanical allodynia in mice," European journal of pharmacology, vol. 592, no. 1, pp. 87-92, 2008.
[17] G. Cavaletti, G. Tredici, M. Braga, and S. Tazzari, "Experimental peripheral neuropathy induced in adult rats by repeated intraperitoneal administration of taxol," Experimental neurology, vol. 133, no. 1, pp. 64-72, 1995.
[18] M. Fidanboylu, L. A. Griffiths, and S. J. Flatters, "Global inhibition of reactive oxygen species (ROS) inhibits paclitaxel-induced painful peripheral neuropathy," PloS one, vol. 6, no. 9, p. e25212, 2011.
[19] A. Areti, V. G. Yerra, V. Naidu, and A. Kumar, "Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy," Redox biology, vol. 2, pp. 289-295, 2014.
[20] N. P. Staff, A. Grisold, W. Grisold, and A. J. Windebank, "Chemotherapy‐Induced Peripheral Neuropathy: A Current Review," Annals of Neurology, , vol. 81, no. 6, pp. 772-781, 2017.
[21] P. B. Schiff, J. Fant, and S. B. Horwitz, "Promotion of microtubule assembly in vitro by taxol," Nature, vol. 277, no. 5698, pp. 665-667, 1979.
[22] P. Schiff and S. B. Horwitz, "Taxol stabilizes microtubules in mouse fibroblast cells," Proceedings of the National Academy of Sciences, vol. 77, no. 3, pp. 1561-1565, 1980.
[23] J. C. Waters, R.-H. Chen, A. W. Murray, and E. Salmon, "Localization of Mad2 to kinetochores depends on microtubule attachment, not tension," The Journal of cell biology, vol. 141, no. 5, pp. 1181-1191, 1998.
[24] E. Komlodi-Pasztor, D. Sackett, J. Wilkerson, and T. Fojo, "Mitosis is not a key target of microtubule agents in patient tumors," Nature reviews Clinical oncology, vol. 8, no. 4, pp. 244-250, 2011.
[25] L. M. Zasadil et al., "Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles," Science translational medicine, vol. 6, no. 229, pp. 229ra43-229ra43, 2014.
[26] R. Lal and M. F. Arnsdorf, "Multidimensional atomic force microscopy for drug discovery: A versatile tool for defining targets, designing therapeutics and monitoring their efficacy," Life sciences, vol. 86, no. 15, pp. 545-562, 2010.
[27] D. J. Müller and Y. F. Dufrêne, "Atomic force microscopy: a nanoscopic window on the cell surface," Trends in cell biology, vol. 21, no. 8, pp. 461-469, 2011.
[28] C. A. Schuh, "Nanoindentation studies of materials," Materials today, vol. 9, no. 5, pp. 32-40, 2006.
[29] J. Wang et al., "Atomic force microscope study of tumor cell membranes following treatment with anti-cancer drugs," Biosensors and Bioelectronics, vol. 25, no. 4, pp. 721-727, 2009.
[30] M. R. Mofrad and R. D. Kamm, Cytoskeletal mechanics: models and measurements in cell mechanics. Cambridge University Press, 2006.
[31] V. J. Morris, A. R. Kirby, and A. P. Gunning, Atomic force microscopy for biologists. World Scientific, 2009.
[32] K. L. Johnson and K. L. Johnson, Contact mechanics. Cambridge university press, 1987.
[33] I. N. Sneddon, "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile," International journal of engineering science, vol. 3, no. 1, pp. 47-57, 1965.
[34] G. Bilodeau, "Regular pyramid punch problem," J. Appl. Mech, vol. 59, no. 3, pp. 519-523, 1992.
[35] K. D. Costa, A. J. Sim, and F. C. Yin, "Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy," Journal of biomechanical engineering, vol. 128, no. 2, pp. 176-184, 2006.
[36] P. Maivald et al., "Using force modulation to image surface elasticities with the atomic force microscope," Nanotechnology, vol. 2, no. 2, p. 103, 1991.
[37] M. Radmacher, R. Tillmann, and H. Gaub, "Imaging viscoelasticity by force modulation with the atomic force microscope," Biophysical journal, vol. 64, no. 3, pp. 735-742, 1993.
[38] R. Mahaffy, C. Shih, F. MacKintosh, and J. Käs, "Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells," Physical Review Letters, vol. 85, no. 4, p. 880, 2000.
[39] J. Alcaraz et al., "Microrheology of human lung epithelial cells measured by atomic force microscopy," Biophysical journal, vol. 84, no. 3, pp. 2071-2079, 2003.
[40] E. A. Peeters, C. W. Oomens, C. V. Bouten, D. L. Bader, and F. P. Baaijens, "Viscoelastic properties of single attached cells under compression," Journal of biomechanical engineering, vol. 127, no. 2, pp. 237-243, 2005.
[41] 張嘉峰, "應用原子力顯微術於 PC12 類神經細胞之生物力學研究," 成功大學微機電系統工程研究所學位論文, pp. 1-85, 2006.
[42] 馮俊雄, "應用原子力顯微鏡與免疫螢光染色法探討 PC-12 類神經細胞之黏彈力學性質," 成功大學機械工程學系學位論文, pp. 1-105, 2007.
[43] 藍宏銘, "原子力顯微鏡於 PC-12 類神經細胞軸突再生研究," 成功大學機械工程學系學位論文, pp. 1-120, 2008.
[44] 劉孟璋, "以原子力顯微鏡量測生命材料機械性質之研究-活體細胞的驗證實例," 成功大學機械工程學系學位論文, pp. 1-73, 2009.
[45] 郭玉宏, "施加電場對 PC-12 類神經細胞生長定位與軸突機械性質之影響," 成功大學奈米科技暨微系統工程研究所學位論文, pp. 1-66, 2010.
[46] R.-J. Chen, C.-C. K. Lin, and M.-S. Ju, "Quasi-linear viscoelastic properties of PC-12 neuron-like cells measured using atomic force microscopy," Journal of the Chinese Institute of Engineers, vol. 34, no. 3, pp. 325-335, 2011.
[47] 周辰, "紫杉醇引發PC-12類神經細胞病變之生物力學及形態學研究," 成功大學機械工程學系學位論文, 2017.
[48] J. R. Jacobs and J. K. Stevens, "Changes in the organization of the neuritic cytoskeleton during nerve growth factor-activated differentiation of PC12 cells: a serial electron microscopic study of the development and control of neurite shape," The Journal of cell biology, vol. 103, no. 3, pp. 895-906, 1986.
[49] L. Choritz, J. Grub, M. Wegner, N. Pfeiffer, and H. Thieme, "Paclitaxel inhibits growth, migration and collagen production of human Tenon's fibroblasts—potential use in drug-eluting glaucoma drainage devices," Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 248, no. 2, pp. 197-206, 2010.
[50] C. D. Scripture, W. D. Figg, and A. Sparreboom, "Peripheral neuropathy induced by paclitaxel: recent insights and future perspectives," Current neuropharmacology, vol. 4, no. 2, pp. 165-172, 2006.
[51] R. C. Polomano, A. J. Mannes, U. S. Clark, and G. J. Bennett, "A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel," Pain, vol. 94, no. 3, pp. 293-304, 2001.
[52] S. Mielke et al., "Comparative neurotoxicity of weekly non-break paclitaxel infusions over 1 versus 3 h," Anti-cancer drugs, vol. 14, no. 10, pp. 785-792, 2003.
[53] A.-M. C. Yvon, P. Wadsworth, and M. A. Jordan, "Taxol suppresses dynamics of individual microtubules in living human tumor cells," Molecular biology of the cell, vol. 10, no. 4, pp. 947-959, 1999.
[54] L. A. Greene and A. S. Tischler, "Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor," Proceedings of the National Academy of Sciences, vol. 73, no. 7, pp. 2424-2428, 1976.
[55] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, no. 9, p. 930, 1986.
[56] H. Richter, E. A. Misawa, D. Lucca, and H. Lu, "Modeling nonlinear behavior in a piezoelectric actuator," Precision engineering, vol. 25, no. 2, pp. 128-137, 2001.
[57] P. N. Konings, W. K. Makkink, and A. M. van Delft, "Reversal by NGF of cytostatic drug-induced reduction of neurite outgrowth in rat dorsal root ganglia in vitro," Brain research, vol. 640, no. 1, pp. 195-204, 1994.
[58] N. P. B. Au, Y. Fang, N. Xi, K. W. C. Lai, and C. H. E. Ma, "Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 10, no. 6, pp. 1323-1333, 2014.
[59] C. H. Keith and K. Blane, "Sites of tubulin polymerization in PC 12 cells," Journal of neurochemistry, vol. 54, no. 4, pp. 1258-1268, 1990.
[60] E. L. Gornstein and T. L. Schwarz, "Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects," Experimental neurology, vol. 288, pp. 153-166, 2017.
[61] J. D. Hemmer, J. Nagatomi, S. T. Wood, A. A. Vertegel, D. Dean, and M. LaBerge, "Role of cytoskeletal components in stress-relaxation behavior of adherent vascular smooth muscle cells," Journal of biomechanical engineering, vol. 131, no. 4, p. 041001, 2009.
[62] E. Spedden, J. D. White, E. N. Naumova, D. L. Kaplan, and C. Staii, "Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy," Biophysical journal, vol. 103, no. 5, pp. 868-877, 2012.
[63] N. Wang, "Mechanical interactions among cytoskeletal filaments," Hypertension, vol. 32, no. 1, pp. 162-165, 1998.
[64] L. A. Lowery and D. Van Vactor, "The trip of the tip: understanding the growth cone machinery," Nature reviews. Molecular cell biology, vol. 10, no. 5, p. 332, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw