進階搜尋


下載電子全文  
系統識別號 U0026-3001201809262900
論文名稱(中文) 廢光纖電纜中鍺資源循環之研究
論文名稱(英文) Circulation of Germanium from Waste Optical Fiber Cables
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 1
出版年 107
研究生(中文) 張弼程
研究生(英文) Bi-Cheng Chang
學號 N46054112
學位類別 碩士
語文別 中文
論文頁數 121頁
口試委員 口試委員-鄭大偉
口試委員-王文裕
口試委員-王立邦
口試委員-吳俊毅
口試委員-胡紹華
指導教授-陳偉聖
中文關鍵字 光纖電纜  鍺光纖  廢棄物處理  鹼焙燒  溶媒萃取  離子交換  資源循環 
英文關鍵字 waste optical fiber cables  germanium  solvent extraction  ion exchange  recovery 
學科別分類
中文摘要 本研究為針對廢光纖電纜中鍺資源的再生技術開發,實驗採用濕法冶金技術進行金屬的回收,主要步驟可以分為前處理、酸溶浸出、分離純化與金屬析出,最終產物得以回到產業端使用。
首先以前處理分離含鍺之玻璃光纖,經由鹼焙燒處理後再以無機酸進行溶出,在此主要成份為鍺、矽、鈉三種元素,其溶出率可達99.5%以上。完成浸出後將所得浸出液進行鍺的分離純化,在本研究中針對溶媒萃取與離子交換法進行探討。溶媒萃取法部分選擇Alamine336作為萃取劑,並添加檸檬酸與鍺化合進行萃取,矽與鈉則留於萃餘液中,實驗結果顯示鍺的萃取率大於98%而矽與鈉幾乎不被萃取,且鍺對於矽與鈉的分離係數(Separation factor)βGe/Si與βGe/Na均大於10000000,表示鍺已藉由萃取達到分離純化的效果,萃取後有機相中的鍺再經氨水反萃回到水溶液中,其反萃率也可達99%以上。離子交換法部分則藉由添加檸檬酸使鍺化合成陰離子後,利用強鹼型陰離子樹脂對陰離子的親和力對鍺進行吸附並與矽與鈉分離,在最佳操作條件利用串柱情況下,鍺之回收率可接近100%,且矽與鈉也幾乎不被吸附,完成吸附後使用鹽酸對樹脂進行脫附,使鍺回到水溶液中再進行後續金屬析出。
金屬析出部分使用減壓濃縮與高溫煅燒方式回收金屬,藉由脫水與高溫去除有機物後均可得到二氧化鍺的產物;而前述分離純化步驟中溶媒萃取的萃餘液與離子交換的尾液含有大量的矽與鈉,所以在此也對高矽鈉廢液進行矽與鈉的回收,藉由調整酸鹼度、高溫除去有機物與浸漬分離,可以將矽與鈉轉換成二氧化矽與硫酸鈉而分離回收。最終藉由儀器分析產品純度,二氧化鍺純度均可達99%以上,有利於鍺資源回到產業端再精煉達到再利用的目的;二氧化矽與硫酸鈉純度也達98%,可回到工業端使用,達成矽鈉回收。
英文摘要 With the rapid development of optical fiber communications industry, germanium as main raw materials of optical fiber cables become more important in recent years. Due to the importance and scarcity of germanium, we developing effective recycling processes of recovering germanium metal from waste fiber optic cables. The processes can be divided into three parts, the first part is pretreatment, the second is separation part and finally is recovery part. In the pretreatment part, we treat the cables and separate fiber which contain germanium by the physical way. The separation part, which is mainly to dissolve the targets and separate the germanium from each other, including roasting, leaching, solvent extraction and ion-exchange. And then in the recovery part, the metal oxides, GeO2, SiO2 and Na2SO4 were obtained from the separation process through concentration and calcination. With the optimal conditions, the recovery of germanium could be recycled to 99%. The purity of obtained products are over 99%. After recycling process, germanium could be recycled to back to the industrial. The process which was provided in this study can provide an effective method to treat the related wastes containing germanium and silicon.
論文目次 中文摘要 I
EXTENDED ABSTRACT II
誌謝 VII
目錄 IX
表目錄 XII
圖目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第二章 理論基礎與文獻回顧 5
2.1 光纖電纜特性概述 5
2.1.1 鍺之性質與資源化現況 7
2.2 資源化技術之理論基礎 8
2.2.1 預處理 8
2.2.2 提煉冶金與資源化技術 10
2.2.3 金屬純化分離理論基礎 13
2.3 鍺(Ge)之資源化技術 32
2.4 光纖電纜之資源化現況 34
第三章 實驗方法與步驟 35
3.1 實驗材料 35
3.1.1 實驗樣品 35
3.1.2 實驗藥品 35
3.2 實驗架構 38
3.3 實驗流程 39
3.3.1 廢光纖電纜預處理 39
3.3.2 酸溶浸漬 40
3.3.3 金屬純化分離階段 41
3.3.4 金屬氧化物產品析出 48
3.3.5 高矽鈉廢液後續處理 49
3.4 含鍺光纖與產物特性分析 50
3.4.1 X射線螢光光譜儀(XRF) 50
3.4.2 X光繞射分析儀(XRD) 50
3.4.3 掃描式電子顯微鏡(SEM)與能量色散光譜儀(EDS) 51
3.4.4 雷射粒徑分析儀(LS) 51
3.4.5 感應耦合電漿原子發射光譜儀(ICP-OES) 51
3.4.6 熱重/熱差分析儀(TG/DTA) 52
第四章 結果與討論 53
4.1 廢光纖電纜預處理與特性分析 53
4.1.1 物理預處理與重量分析 53
4.1.2 剝除塑膠方法分析 55
4.1.3 玻璃光纖性質分析 60
4.1.4 鹼焙燒 63
4.1.5 廢光纖電纜預處理小結 65
4.2 酸溶浸漬 66
4.2.1 二氧化矽型態之浸漬探討 66
4.2.2 矽酸鈉型態之浸漬探討 71
4.2.3 酸溶浸漬小結 73
4.3 金屬分離純化研究 74
4.3.1 溶媒萃取法 74
4.3.2 溶媒萃取法小結 83
4.3.3 離子交換法 84
4.3.4 離子交換小結 98
4.4 金屬氧化物產品析出 100
4.4.1 濃縮脫水與煅燒 100
4.4.2 金屬氧化物成品特性分析 101
4.5 矽鈉廢液之後續處理 105
第五章 結論與建議 109
5.1 結論 109
5.2 建議 111
參考文獻 113

參考文獻 [1] Zion Market Research, Fiber Optics Market for Telecom & Broadband, Healthcare, Defense, Private Data Networks, and Other Applications: Global Industry Perspective, Comprehensive Analysis and Forecast, 2016-2022, 2017.
[2] U.S. Geological Survey, “Mineral Commodity Summaries 2017,” 2017.
[3] J. H. Adams, “Germanium and Germanium Compounds,” Metals Handbook, 10th ed.; ASM International: Materials Park, 1990.
[4] European Commission, “Critical Raw Materials for the EU: Report of the Ad-Hoc Working Group on Defining Critical Raw Materials,” European Commission: Brussels, Belgium, 2010.
[5] Z. Rong-Kun, Extraction of germanium from lignite, CN1101380 A, 1995.
[6] L. Ting et al., Method for preparing carbocoal and extracting germanium-contained matter from brown coal destructive ditillation, CN1814701 A, 2006.
[7] L. Ba-Ke, G. Chi -Ming, Method for extracting germanium from lignite by pyrogenic process, CN101413063 A, 2009.
[8] P. Shih-Kun et al., Germanium ore washing method capable of improving pyrometallurgy recovery rate, CN105170311 A, 2015.
[9] F. Arroyo et al., “Recovery of Germanium from Coal Fly Ash Leachate by Precipitation,” World of Coal Ash (WOCA) Conference, May, 2009.
[10] F. Arroyo et al., “Precipitation of Germanium from Coal Fly Ash Leachates,” Coal Combustion and Gasification Products, 2(1), 28–34, 2010.
[11] J. Jandová et al., “Recovery of germanium from fly ash-waste from coal combustion,” In Proceedings of European Metallurgical Conference, Fridrichshafen, BRD; GDMB: Clausthal, 69-75, 2002.
[12] J. Jandová, H. Vu, “Processing of germanium-bearing fly ash. In Proceedings of the Fifth International Conference on Metallurgy,” Refractories and Environment, Košice, The Institute of Metallurgy and Materials: 2002, 107-112, 2001.
[13] J. Jandová, H. Vu, P. Fecko, “Recovery of germanium from Czech brown-coal fly ash,” Proceedings of the Nineteenth Annual International Pittsburgh Coal Conference, Pittsburgh, PA, University of Pittsburgh: Pittsburgh, 69-75, 2002.
[14] Y. Inukai et al., “Selective separation of germanium(IV) by 2,3-dihydroxypropyl chitosan resin,” Analytica Chimica Acta, 371(2-3), 187-193, 1998.
[15] F. J. S. Menendez et al., “Process for the recovery of germanium from solutions that contain it,” U.S. Patent 4886648, 1989.
[16] D. A. D. Boateng, D. L. Ball, G. M. Swinkels, “Recovery of germanium from aqueous solutions,” US Patent 4525332, 1989.
[17] F. Arroyo et al., “Recovery of Germanium from Aqueous Solutions by Ion-Exchange Extraction of Its Catechol Complex,” Industrial & Engineering Chemistry Research, 49(10), 4817-4823, 2010.
[18] F. Torralvo et al., “Recovery of germanium from real fly ash leachates by ion-exchange extraction,” Minerals Engineering, 24(1), 35-41, 2011.
[19] D. E. Chirkst et al., “Sorption of germanium from alkaline solutions on anion-exchange resin,” Russian Journal of Applied Chemistry, 81(1), 38-41, 2008.
[20] I. Ozawa et al., “High-speed recovery of germanium in a convection-aided mode using functional porous hollow-fiber membranes,” Journal of Chromatography. A, 888(1-2), 43-49, 2000.
[21] A. Nozoe, K. Ohto, H. Kawakita, “Germanium Recovery using Catechol Complexation and Permeation through an Anion-Exchange Membrane,” Separation Science and Technology, 47(1), 62-65, 2012.
[22] H. Takemura et al., “Germanium recovery by catechol complexation and subsequent flow through membrane and bead-packed bed column,” Journal of Chemical Technology & Biotechnology, 88(8), 1468-1472, 2013.
[23] G. Cote, D. Bauer, “Liquid-liquid extraction of germanium with oxine derivatives,” Hydrometallurgy, 5(2-3), 149-160, 1980.
[24] H. J. Park, L. L. Tavlarides, “Germanium(IV) adsorption from aqueous solution using a kelex-100 functional adsorbent,” Industrial and Engineering Chemistry Research, 48(8), 4014-4021, 2009.
[25] D. D. Harbuck, J. C. Judd, D.V. Behunin, “Germanium Solvent Extraction From Sulfuric Acid Solutions (and Co-Extraction of Germanium and Gallium),” Solvent Extraction and Ion Exchange, 9(3), 383-401, 1991.
[26] S. Kumar, “Method for recovery of germanium,” CN 1005408 B, 1986.
[27] M. M. Shehata et al., “Separation of radioarsenic from irradiated germanium oxide targets for the production of 71As and 72As,” Journal of Radioanalytical and Nuclear Chemistry, 287(2), 435-442, 2011.
[28] D. Grdenić, V. Jagodić, “Separation of germanium from arsenic by solvent extraction with dioctyl methylenebisphosphonic acid,” Journal of Inorganic and Nuclear Chemistry, 26(1), 167-170, 1964.
[29] B. Gupta, N. Mudhar, “Extraction and Separation of Germanium Using Cyanex 301/Cyanex 923,” Its Recovery from Transistor Waste. Separation Science and Technology, 41(3), 549-572, 2006.
[30] J. Liang et al., “Study on Extracting of Germanium with Trioctylamine,” Energy Procedia, 17, 1965-1973, 2012.
[31] K. L. Nash, G. R. Choppin, “The thermodynamics of synergistic solvent extraction of zinc(II),” Journal of Inorganic and Nuclear Chemistry, 39(1), 131-135, 1977.
[32] T. Harington, M. M. Hossain, “Extraction of lactic acid into sunflower oil and its recovery into an aqueous solution,” Desalination, 218(1-3), 287-296, 2008.
[33] S. M. Manskaya, T. V. Drozdova., “Geochemistry of Organic Substances, Pergamon Press,” 257-276, 1968.
[34] F. Arroyo et al., “Hydrometallurgical Recovery of Germanium from Coal Gasification Fly Ash. Solvent Extraction Method,” Ind. Eng. Chem. Res., 47 (9), 3186-3191, 2008.
[35] F. Arroyo et al., “Industrial Equipment Design for the Recovery of Germanium from Coal Fly Ash Leachates by Solvent Extraction,” World of Coal Ash (WOCA) Conference, May, 2011.
[36] M. Bohrer et al., “A process for recovering germanium from effluents of optical fiber manufacturing,” Journal of Lightwave Technology, 3(3), 699-705, 1985.
[37] A. V. Naumov, “World market of germanium and its prospects,” Russian Journal of Non-Ferrous Metals., 48 (4): 265-272, 2007.
[38] http://www.ufoc.com.tw
[39] http://www.arcelect.com/fibercable.htm
[40] D. L. Wood et al., “Germanium Chemistry in the MCVD Process for Optical Fiber Fabrication,” Journal of Lightwave Technology, 5(2), 277-285, 1987.
[41] J. Meija et al., “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure and Applied Chemistry, 88(3), 265-291, 2006.
[42] J. Laeter et al., “Atomic weights of the elements. Review 2000 (IUPAC Technical Report),” Pure Appl. Chem., 75(6), 683-800, 2003.
[43] S. G. Bailey, R. Raffaelle, K. Emery, “Space and terrestrial photovoltaics: synergy and diversity,” Progress in Photovoltaics: Research and Applications, 10(6), 399-406, 2002.
[44] G. H. Rieke, “Infrared Detector Arrays for Astronomy,” Annual Review of Astronomy and Astrophysics, 45(1), 77-115, 2007.
[45] R. R. Moskalyk, “Review of germanium processing worldwide,” Minerals Engineering, 17(3), 393-402, 2004.
[46] U.S. Geological Survey, “Mineral Commodity Summaries 2013,” 2013.
[47] U.S. Geological Survey, “Mineral Commodity Summaries 2014,” 2014.
[48] U.S. Geological Survey, “Mineral Commodity Summaries 2015,” 2015.
[49] U.S. Geological Survey, “Mineral Commodity Summaries 2016,” 2016.
[50] 南條道夫, “都市鉱山開発―包括的資源観によるリサイクルシステムの位置付け”, 東北大學選鑛製錬研究所彙報, 43, 239-251, 1988.
[51] D. Smith, “Hydrometallurgy. Literature Survey,” 4-32, 1993.
[52] D. S. Smit, “The Leaching Behaviour of A Ni-Cu-Co Sulphide Ore in An Oxidative Pressure-Acid Medium,” Master’s thesis, Potchefstroomse Universiteit vir Christelike Hoer Onderwys, 2001.
[53] Turner, Edward, Liebig, Justus; Gregory, William, eds., “Elements of chemistry: including the actual state and prevalent doctrines of the science (7 ed.),” London: Taylor and Walton. 102, 1841.
[54] J. Yu et al., “Chemical Extraction of Precious Metals,” Platinum Metals Review, 49(4), 189-189, 2005.
[55] J. M. Sanchez et al., “Extraction of Neodymium(Iii) At Trace Level With Di(2-Ethyl-Hexyl) Phosphoric Acid in Hexane,” Solvent Extraction and Ion Exchange, 17(3), 455-474, 1999.
[56] M. Filiz, N. A. Sayar, and A. A. Sayar, “Extraction of cobalt(II) from aqueous hydrochloric acid solutions into alamine 336–m-xylene mixtures,” Hydrometallurgy, 81(3-4), 167-173, 2006.
[57] Y. Baba, M. Iwakuma, and H. Nagami, “Extraction Mechanism for Copper(II) with 2-Hydroxy-4-n-octyloxybenzophenone Oxime,” Ind. Eng. Chem. Res., 41(23), 5835-5841, 2002.
[58] S. Bayat et al., “Germanium separation and purification by leaching and precipitation,” Journal of Central South University, 23(9), 2214-2222, 2016.
[59] M. Shakirullah et al., “Leaching of Minerals in Degari Coal,” Journal of Minerals & Materials Characterization & Engineering, 5(2), 131-142, 2006.
[60] S. S. Kolekar, M. A. Anuse, “Solvent extraction separation of rhodium (III) with N-n- octylaniline as an extractant,” 58(5), 761-771, 2002.
[61] G. S. Pokrovski, J. Schott, “Experimental study of the complexation of silicon and germanium with aqueous organic species: implications for germanium and silicon transport and Ge/Si ratio in natural waters,” Geochimica et Cosmochimica Acta, 62(21-22), 3413-3428, 1998.
[62] F. Arroyo, J. Olivares, P. Coca, “Hydrometallurgical recovery of germanium from coal gasification fly ash: Pilot plant scale evaluation,” Industrial and Engineering Chemistry Research, 48(7), 3573-3579, 2009.
[63] A. DeSchepper, “Liquid-liquid extraction of germanium by LIX 63,” Hydrometallurgy, 1(3), 291-298, 1976.
[64] M. V. Pellow-Jarman, “The liquid-liquid extraction of Germaniun with the 7-alkylated 8- hydroxyquinoline derivative - KELEX 100,” Master dissertation. University of Natal, 1990.
[65] Wolfang Krajewski, Kunibert Hanusch, “Process for the fluid-fluid extraction of gallium, germanium or indium from liquid solutions,” US4666686, 1986.
[66] T. Zhou, X. Zhong, L. Zheng, “Recovering in Ge and Ga from zinc residues,” JOM, 41(6), 36-40, 1989.
[67] Ma et al., “Extraction of germanium(IV) from acid leaching solution with mixtures of P204 and TBP,” J. Cent. South Univ., 20, 1978-1984, 2013.
[68] S. Nusen et al., “Recovery of germanium from synthetic leach solution of zinc refinery residues by synergistic solvent extraction using LIX 63 and Ionquest 801,” 151, 122-132 ,2015.
[69] D.R. épouse Bauer, G. Cote, P. Fossi, B. Marchon, “Process for Selective Liquid-Liquid Extraction of Germanium,” US4389379A, 1983.
[70] H. Wang, L. Jiangshun, J. Kaixi, Q. Dingfan., “Recovery of Ga, Ge from zinc residues by hydrometallurgical processes,” Presented at the Sohn International Symposium; Advanced Processing of Metals and Materials, New, Improved and Existing Technologies: Aqueous and Electrochemical Processing, 6, 413-420, 2006.
[71] X. Kai, L. Jie, “Synthesis Principle of Several Germanium Extractants and Comparasion of Extraction Performance,” Hydrometallurgy of China, 30(2), 2011.
[72] F. T. Shostak et al., Izv. Sib. Otd. Akad. Nauk SSSR, 8, 69-74, 1960.
[73] D. A. Everest, J. C. Harrison, “Studies in the chemistry of quadrivalent germanium. Part IV. The chemical nature of solutions of quadrivalent germanium in hydrochloric or hydrobromic acid,” Journal of the Chemical Society, 0, 1820-1823, 1957.
[74] D. A. Everest, “Studies in the chemistry of quadrivalent germanium. Part III. Ion-exchange studies of solutions containing germanium and oxalate,” Journal of the Chemical Society, 0, 4415-4418, 1995.
[75] Masaru Ogura, Indra Astuti., “Development of a Technology for Silicon Production by Recycling Wasted Optical Fiber,” Ind. Eng. Chem. Res., 43(8), 1890-1893, 2004.
[76] M. Bergeron, A. Langlais, “GeCl4 and/or SiCl4 recovery process from optical fibers or glassy residues and process for producing SiCl4 from SiO2 rich materials,” US8486360B2, 2013.
[77] W. Qin et al., “Method for recovering germanium in waste and old germanium-doped fibers,” CN102925689 A, 2013.
[78] H. Kawakita, S. Morisada, K. Ohto, “Germanium Recovery using Ion-Exchange Membrane and Solvent Extraction,” 25(4), 2014.
[79] D. S. Flett, “Solvent extraction in hydrometallurgy: The role of organophosphorus extractants,” J. Organomet. Chem., 690, 10, 2426-2438, 2005.
[80] B. Kokare et al., “Liquid - Liquid Extraction of Cerium(Iv) From Salicylate Media Using N-7V-Octylaniline in Xylene As an Extractant,” Journal of the Chilean Chemical Society, 55(4), 431-435, 2010.
[81] F. Liu et al., “Recovery and separation of gallium(III) and germanium(IV) from zinc refinery residues: Part II: Solvent extraction,” Hydrometallurgy, 171, 149-156, 2017.
[82] A. Boualia, A. Mellah, A. Silem, “The effect of raw and sulfonated kerosene-type diluent on the solvent extraction of uranium and co-extractable impurities from solutions. Part 1. Uranyl nitrate solution,” Hydrometallurgy, 24(1), 1-9, 1990.
[83] A. Silem, A. Boualia, A. Mellah, “The effect of raw and sulfonated kerosene-type diluent on the solvent extraction of uranium and co-extractable impurities from solutions. Part 2. Industrial phosphoric acid,” Hydrometallurgy, 24(1), 1-9, 1990.
[84] C. E. Harland, “Ion Exchange: Theory and Practice,” Royal Society of Chemistry, 39-48, 2007.
[85] A. K. SenGupta, “Ion Exchange Technology: Advances in Pollution Control,” CRC Press, 1995.
[86] A. Wołowicz, Z. Hubicki, “Comparison of strongly basic anion exchange resins applicability for the removal of palladium(II) ions from acidic solutions,” Chemical Engineering Journal, 171(1), 206-215, 2011.
[87] 朱屯,“萃取與離子交換”,冶金工業出版社, 387-471, 2005。
[88] 王廣珠、汪德良、崔煥芳, “離子交換樹脂使用及診斷技術,” 化學工業出版社, 12-14, 2004。
[89] R. F. Helms, “Evaluation of ion exchange for demineralization of wastewater,” Master's Thesis, University of Colorado, Boulder, Co, 1973.
[90] W. Chia-Ying, “Recovery of Tungsten and Vanadium from Spent SCR Catalysts by Ion Exchange, Master dissertation. National Cheng Kung University, 2015.
[91] M. Barros et al., “General Aspects of Aqueous Sorption Process in Fixed Beds,” In Mass Transfer - Advances in Sustainable Energy and Environment Oriented Numerical Modeling, In Tech, 2013
[92] D. M. Ruthven, “Principles of adsorption and adsorption processes,” John Wiley & Sons, 1984.
[93] 周書葵, 放射性廢水處理技術, 中國化學工業出版社, 2012.
[94] S. Brunauer et al., “On a Theory of the van der Waals Adsorption of Gases,” Journal of the American Chemical Society, 62(7), 1723-1732, 1940.
[95] Y. Liu, “Is the free energy change of adsorption correctly calculated,” Journal of Chemical and Engineering Data, 54(7), 1981-1985, 2009.
[96] H. MORI, “Extraction of Silicon Dioxide from Waste Colored Glasses by Alkali Fusion Using Sodium Hydroxide,” Journal of the Ceramic Society of Japan, 111(1294), 376-381, 2003.
[97] P. L. Boar, L. K. Ingram, “The Comprehensive Analysis of Coal Ash and Silicate Rocks by Atomic-absorption Spectrophotometry by a Fusion Technique,” Analyst, 95, 124-130, 1970.
[98] R. M. Fowler et al., “Silicate analysis,” Analytical Chemistry, 24(1), 196-197, 1952.
[99] A. M. Eyal, R. Canari, “pH Dependence of Carboxylic and Mineral Acid Extraction by Amine-Based Extractants: Effects of pKa, Amine Basicity, and Diluent Properties,” Industrial and Engineering Chemistry Research, 34(5), 1789-1798, 1995.
[100] B. Pommerrenig et al., “Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport,” Plant Science, 238, 212-227, 2015.
[101] D. G. Brookins, “Eh-pH Diagrams for Geochemistry,” Springer Science & Business Media, 38-39, 2012.
[102] H. Y. Shu, M. C. Chang, J. J. Liu, “Cation resin fixed-bed column for the recovery of valuable THAM reagent from the wastewater,” Process Safety and Environmental Protection, 104, 571-586, 2016.
[103] R. Scott, N. Coombs, G. A. Ozin, “Non-aqueous synthesis of mesostructures tin dioxide,” J. Mater. Chem. 13, 969-974, 2003.
[104] F. Arroyo et al., “Germanium recovery from gasification fly ash: Evaluation of end-products obtained by precipitation methods,” Journal of Hazardous Materials, 167(1-3), 582-588, 2009.
[105] H. Mori, “Extraction of silicon dioxide from waste colored glasses by alkali fusion using potassium hydroxide,” Journal of Materials Science, 38(16), 3461-3468, 2003.
[106] N. Gan et al., “Dissolution of Germanium in Sulfuric Acid Based Solutions,” ECS Transactions, 69(8), 277-284, 2015.
[107] K. Sasan et al., “Removing Dissolved Silica from Waste Water with Catechol and Active Carbon,” Sandia National Laboratories, SAND2017-0554, January 2017
[108] G. Pokrovski et al., “An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution,” Chemical Geology, 163(1-4), 151-165, 2000.
[109] L. Zhang, Z. Xu, “Application of vacuum reduction and chlorinated distillation to enrich and prepare pure germanium from coal fly ash,” Journal of Hazardous Materials, 321, 18-27, 2017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw