進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3001201313002100
論文名稱(中文) 金屬矽化物薄膜應用於光感測器電極之研究
論文名稱(英文) Application of metal silicide thin film to electrode of photodetectors
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 1
出版年 102
研究生(中文) 何怡瑩
研究生(英文) Yi-Yin Ho
學號 N26994091
學位類別 碩士
語文別 中文
論文頁數 100頁
口試委員 指導教授-施權峰
口試委員-黃正亮
口試委員-魏炯權
口試委員-陳仕鴻
中文關鍵字 金屬矽化物  光感測器  矽化鎳  矽化鐿  量子點 
英文關鍵字 silicide  nickel  ytterbium  photodector  nanocrystal 
學科別分類
中文摘要 本論文主要研究金屬矽化物薄膜(矽化鎳與矽化鐿)熱退火處理後的特性分析,探討退火過程中薄膜的相變化與電性的關係,並將其應用於薄膜電晶體光偵測器的電極上。金屬矽化物使用多晶矽做為犧牲層較非晶矽的犧牲層形成的晶粒較大也較容易形成相轉變,而有較低的片電阻值,但也造成較小的熱製程窗口。場絕緣層使用氮化矽薄膜較二氧化矽具有較大的壓應力能抑制相轉變並能降低片電阻值。矽化鐿因有較低的功函數且多晶矽熱製程窗口較大,故薄膜電晶體的特性優於矽化鎳薄膜電晶體,但金屬鐿易與氧化層反應造成元件特性不佳,故元件場絕緣層以氮化矽替之。矽化鎳與矽化鐿分別在退火500處及600處時有最低的片電阻值。薄膜電晶體光偵測器以矽量子點薄膜與N型多晶矽為感光層,在 510nm 光照下,矽奈米結構量子點因其量子侷限效應與表面能態效應,可有效提升光偵測器之光電流。
英文摘要 This thesis reported on the application of metal silicide thin film to electrode of photodectors. The relationship between the phase transitions and sheet resistance of metal silicide films, nickel silicide and ytterbium silicide, were discussed. The sheet resistance of metal silicide with poly silicon as a sacrificial layer was lower than amorphous silicon due to the grain size increasing. The SiNx film as a field insulator layer had lager compress stress than SiO2 film. The compress stress suppressed the phase transition of metal silicide thin films and improved the thermal stability, resulting a low sheet resistance. The device characteristics of the thin film transistors (TFT) photodetector with YbSi electrode was better than NiSi electrode owing to low Schottky barrier height. The lowest sheet resistance of NiSi and YbSi films were annealed by rapid thermal annealing at 500℃ and 600℃. Si nanocrystal embedded in the activeT Schottky barrier height. The lowest sh photocurrent (510nm) owing to quantum confinement effect and the surface state effect.
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIII
圖目錄 IX

第一章 緒論 1
1-1 前言 1
1-2 光電晶體之發展 1
1-3 薄膜光偵測器之分類 3
1-3-1無機光偵測器 3
1-3-2 有機光偵測器 4
1-4 金屬矽化物之發展 6
1-4-1 金屬矽化物製程 6
1-4-2 金屬矽化物之種類 7
1-5 研究動機 8
1-6 論文架構及研究方向 9
第二章 理論基礎 10
2-1 薄膜電晶體工作原理 10
2-1-1 薄膜電晶體之截止區 11
2-1-2 薄膜電晶體之線性區 11
2-1-3 薄膜電晶體之飽和區 12
2-2矽奈米結構薄膜電晶體光偵測器之光電轉換原理 12
2-2-1 矽奈米微晶金氧半場效電晶體光偵測器 12
2-2-2 矽奈米線金氧半場效電晶體光偵測器 13
2-3 蕭特基接觸 14
2-3-1 蕭特基位障 16
2-4 元件特性參數 17
2-4-1 臨界電壓 17
2-4-2 場效移動率 18
2-4-3 次臨界擺幅 18
2-4-4 寄生電阻 19
2-4-5 開/關電流比 19
2-5 光響應度 20
第三章 實驗流程 22
3-1 材料選擇 22
3-1-1 矽 22
3-1-2 矽化鎳 (NiSi) 與矽化鐿 (YbSi2-x) 22
3-2 薄膜電晶體之光偵測器製程介紹 24
3-2-1 洗淨 25
3-2-2 成膜 25
3-2-3 曝光 25
3-2-4 蝕刻 25
3-2-5 剝膜 26
3-3 多晶矽薄膜電晶體之光偵測器 27
3-3-1元件製作 27
3-3-2 光罩設計 30
3-3-3 金屬矽化物薄膜試片製備 31
3-4 矽奈米結構量子點薄膜電晶體之光偵測器 32
3-4-1 元件製作 32
3-4-2 矽化鐿電極面臨的問題 35
3-5 實驗機台及參數 35
3-5-1 水平爐管 35
3-5-2 電子束微影系統 36
3-5-3 濕式蝕刻 37
3-5-4 乾式蝕刻 38
3-5-5 濺鍍 39
3-5-6 多層金屬濺鍍系統 39
3-6 材料分析 40
3-6-1 X光繞射儀-反應相的相位鑑定 40
3-6-2 熱場發射掃描式電子顯微鏡 41
3-6-3 原子力顯微鏡 41
3-6-4 穿透式電子顯微鏡 41
3-7 實驗量測 42
3-7-1 電流-電壓量測 42
3-7-2 光電流量測 42
第四章 結果與討論 44
4-1 金屬矽化物之片電阻分析 44
4-1-1 金屬矽化物成長於單晶矽、非晶矽與多晶矽犧牲層 44
4-1-2多晶金屬矽化物成長於氮化矽與二氧化矽薄膜 49
4-2金屬矽化物之X光繞射分析 52
4-2-1 金屬矽化物成長於非晶矽與多晶矽犧牲層 53
4-2-2多晶金屬矽化物成長於氮化矽薄膜 60
4-3金屬矽化物之表面形態分析 64
4-3-1金屬矽化物成長於非晶矽與多晶矽犧牲層 64
4-3-2多晶金屬矽化物成長於氮化矽薄膜 68
4-4金屬矽化物之原子力顯微鏡分析 70
4-4-1非晶矽與多晶矽之矽化鎳薄膜 70
4-4-2 非晶矽與多晶矽之矽化鐿薄膜 74
4-5金屬矽化物之穿透式顯微鏡分析 78
4-5-1 多晶矽化鎳薄膜 78
4-5-2 多晶矽化鐿薄膜 80
4-6薄膜電晶體元件電性分析 82
4-6-1 金屬矽化物薄膜電晶體 83
4-6-2 矽奈米結構量子點薄膜電晶體 87
4-7薄膜電晶體光偵測器之光電特性分析 89
4-7-1 金屬矽化物薄膜電晶體之光偵測器 89
4-7-2矽奈米結構量子點薄膜電晶體之光偵測器 93
第五章 結論與未來規劃 96
5-1 結論 96
5-2 未來規劃 97
參考文獻 98

參考文獻 參考文獻
[1] D. M. Brown, W. E. Engeler, M. Garfinkel, and P. V. Gray, “Self-aligned molybdenum gate MOSFET’s”, J. Electrochem Soc., 115, 874 (1968)
[2] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tash, Jr., “Composite TiSi2/n+ poly-Si low resistivity gate electrode and interconnect for VLSI device technology”, IEEE Trans. Electron Device, 29, 547 (1982)
[3] J. N. Shive, “A new germanium photo-resistance cell,” Phs. Rev., 76, 575 (1949)
[4] J. N. Shive, “The properties of germanium phototransistors,” J. Opt. Soc. Am., 43, 239 (1953.)
[5] C. W. Chen, and T. K. Gustafson, “Characteristics of an avalanche phototransistor fabricated on a Si surface,” Appl. Phys. Lett., 39, 161 (1981)
[6] J. C. Campbell et al., “Avalanche InP/InGaAs heterojunction phototransistor,” IEEE J. Quantum Electron., 19, 1134 (1983)
[7] T. Moromoto, T. Ohguro, H.S. Momose, etc., T. Iinuma, I. Kunishima, K. Shguro.Etc., “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep Submicrometer Logic CMOS ULSI”, IEEE Trans. Electron Devices, 42, No.5, 915-923 (1995)
[8] V.Probst, H.Schaber, P.Lippens, L.Van den hove, and R. F. De Keersmaeckeer, “Limitations of TiSi2 as a source for dopant diffusion”, Appl. Phys. Lett., 52, 1803 (1988)
[9] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J.Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2”, IEEE Trans. Electron Devices, 38, 26 (1991)
[10] Y. Matsubara, T. Horiuchi, and K. Okumura, “Activation energy for the C49-to-C54 phase transition of poycrystalline TiSi2 films with arsenic impurities”, Appl. Phys. Lett. , 62, 263 (1993)
[11] S. Motakef, J. M. E. Harper, F. K. Michel, G. all, and N. Herbots, “Stability of C49 and C54 phase of TiSi2 under ion bombardment”, J. Appl .Phys., 70, 1736 (1988)
[12] O. Thomas, P. Gas, F. M. d’Heurle, F. K. Michel, G. Scilla, “Diffusion of boron phosphorus, and arsenic implanted in thin films of cobalt disilicide”, J. Vac. Sci. Tech.A, 6, 1736 (1988)
[13] V. Probst, H. Schaber, A. Mitwalsky, H. Kabza, L. Van den hove, and K.M aex, “WSi2 and CoSi2 as diffusion sources for shallow junction formation in silicon”, J. Appl. Phts., 70, 708 (1991)
[14] O. Thomas, P. Gas, A. Charai, F. K. LeGoues, A. Michel, G. Scilla, F. M. d’Heurle, “The diffusion of elements implanted in films of cobalt disilicide”, J. Appl. Phys., 64, 2973 (1988)
[15] B.A. Juliesa, D. Knoesena, R. Pretoriusb, D. Adamsa, “A study of the NiSi to NiSi2 transition in the Ni-Si binary system”, Thin Solid Films, 347, 201-207 (1999)
[16] H. Iwai , T. Ohguro , S. i. Ohmi, “NiSi salicide technology for scaled CMOS”, Microelectronic Engineering 60 (2002) 157–169.
[17] D. Mangelinck, P. Gas, A. Grob, B. Pichaud, and O. Thomas, “Formation of Ni silicide from Ni(Au) films on (111) Si”, J. Appl. Phys. 79 (1996)
[18] G. Larrieu, D. A. Yarekha, E. Dubois, N. Breil, and O. Faynot, “Arsenic-Segregated Rare-Earth Silicide Junctions: Reduction of Schottky Barrier and Integration in Metallic n-MOSFETs on SOI”, IEEE ELECTRON DEVICE LETTERS, VOL. 30, NO. 12, DECEMBER (2009)
[19] J. M. Shieh, W. C. Yu, J. Y. Huang, C. K. Wang, B. T. Dai, H. Y. Jhan, C. W. Hsu, H. C. Kuo, F. L. Yang, and C. L. Pan, “Near-infrared silicon quantum dots metal-oxide-semiconductor field-effect transistor photodetector”, Appl. Phys. Lett., 94, 241108 (2009)
[20] H. G. Choi, Y. S. Choi, Y. C. Jo and H. Kim, “A Low-Power Silicon-on-Insulator Photodetector with a Nanometer-Scale Wire for Highly Integrated Circuit”, J. Appl .Phys., 43, No. 6B, 2004, 3916-3918. (2004)
[21] Donald A. Neamen, “Fundamentals of Semiconductor Physics and Devices” McGraw-Hill, 344 ( 2003)
[22] Donald A. Neamen, “Fundamentals of Semiconductor Physics and Devices” McGraw-Hill, 354-356 (2003)
[23] Yu- Long Jiang, Guo-Ping Ru, Xin-Ping Qu and Bing-Zong Li, “Oxidation Suppression for YbSi2-x Formation and New Method to Extract Schottky Barrier Height by Admittance Measurement”, IEEE. (2007)
[24] Shiyang Zhu, Jing Chen, M. -F. Li, S. J. Lee, Jagar Singh, C. X. Zhu, Anyan Du, C. H. Tung, Albert Chin and D. L. Kwong, “N-Type Schottky Barrier Source/Drain MOSFET Using Ytterbium Silicide”, IEEE ELECTRON DEVICE LETTERS, VOL. 25, NO. 8, AUGUST (2004)
[25] W. Knaepen, J. Demeulemeester, J. Jordan-Sweet, A. Vantomme, C. Detavernier, R. L. Van Meirhaeghe, C. Lavoie, “In situ x-ray diffraction study of Ni-Yb interlayer and alloy systems on Si(100) ”, American Vacuum Society, A 28, 20 (2010)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw