進階搜尋


下載電子全文  
系統識別號 U0026-3001201218432300
論文名稱(中文) 凝血酶調節素對血管新生的調控探討
論文名稱(英文) The Regulatory Roles of Thrombomodulin in Angiogenesis
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 100
學期 1
出版年 101
研究生(中文) 郭承翔
研究生(英文) Cheng-Hsiang Kuo
學號 s5894112
學位類別 博士
語文別 英文
論文頁數 122頁
口試委員 指導教授-施桂月
口試委員-吳華林
召集委員-江美治
口試委員-湯銘哲
口試委員-林淑華
口試委員-黃德富
中文關鍵字 凝血酶調節素 
英文關鍵字 thrombomodulin 
學科別分類
中文摘要 血管新生參與在正常發育以及成熟組織恆定的許多生物反應過程,而不平衡的血管新生調控會導致病理症狀。凝血酶調節素是由五個不同的結構功能區所組成的第一型穿膜蛋白。其最為人熟知的功能是透過凝血酶活化血漿酶原蛋白C來執行血管內皮細胞抗凝血機制。除了細胞膜上有凝血酶調節素之表現外,不同的凝血酶調節素片段也在人類體液中被發現,並且與許多疾病狀態下的內皮細胞損傷有關。重組凝血酶調節素的類上皮細胞生長激素結構及富含絲胺酸/蘇胺酸結構片段蛋白(rTMD23)已被證實是細胞生長素也是血管新生素。然而,凝血酶調節素的其它結構功能區在血管新生的角色尚未被研究。在本論文的第一部分目標是找尋重組凝血酶調節素的類上皮細胞生長激素結構及富含絲胺酸/蘇胺酸結構片段蛋白的血管新生活性媒介。利用點突變的方法,我們製備了多種缺失活化血漿酶原蛋白C能力的重組凝血酶調節素的類上皮細胞生長激素結構及富含絲胺酸/蘇胺酸結構片段突變蛋白。並且證實這些突變蛋白具有與野生型重組凝血酶調節素類上皮細胞生長激素結構及富含絲胺酸/蘇胺酸結構片段蛋白一樣的血管新生能力,此結果顯示對於重組凝血酶調節素的類上皮細胞生長激素結構及富含絲胺酸/蘇胺酸結構片段蛋白促進血管新生活性不需要活化型血漿酶原蛋白C能力。更進一步,我們證實重組凝血酶調節素的類上皮細胞生長素結構及富含絲胺酸/蘇胺酸結構片段蛋白藉由第一型纖維母細胞生長因子受體及syndecan4來促進血管新生。本論文的第二部分是探討重組凝血酶調節素的類凝集素結構片段蛋白(rTMD1)抗血管新生的能力。實驗結果顯示,重組凝血酶調節素的類凝集素結構片段蛋白經由與Lewis Y抗原結合可以抑制血管新生。本研究證明凝血酶調節素具有兩種對於血管新生的相反角色-重組凝血酶調節素的類上皮細胞生長激素結構及富含絲胺酸/蘇胺酸結構片段蛋白藉由第一型纖維母細胞生長因子受體來促進血管新生;然而,重組凝血酶調節素的類凝集素結構片段蛋白經由與Lewis Y抗原結合的方式抑制血管新生。總結而言,我們證實凝血酶調節素同時具有促進血管新生及抑制血管新生的能力。因此證明凝血酶調節素是凝血系統、發炎反應和血管新生的重要轉接點。
英文摘要 Angiogenesis is involved in many biological processes during normal development and during homeostasis of adult tissues, whereas unbalanced regulation of angiogenesis leads to pathological conditions. Thrombomodulin (TM) is a membrane-tethered type-I glycoprotein that consists of 5 distinct functional domains. The well-known function of TM on endothelium is to mediate anticoagulation through thrombin-dependent activation of protein C. In addition to membrane-tethered TM, various soluble fragments of TM were detected in human body fluid and correlated with endothelial damage in several pathological conditions. The recombinant epidermal growth factor-like domain plus serine/threonine-rich domain of TM (rTMD23) has been demonstrated as a mitogen and an angiogenic factor, while the angiogenic activity of the other TM domains has not been well studied. In the first part of this study, we investigated the mediators involved in rTMD23’s angiogenic activity. By using site-directed mutagenesis, we generated several rTMD23 mutants lacking the ability to activate protein C and demonstrated that their angiogenic function is similar to wild-type rTMD23, indicating that activated protein C is not required for rTMD23’s angiogenic activity. Furthermore, we demonstrated that fibroblast growth factor receptor 1 (FGFR1)/syndecan4 system may mediate rTMD23-induced angiogenesis. In the second part of this study, we explored the role of recombinant lectin-like domain of TM (rTMD1) on antiangiogenesis. Our results showed that rTMD1 inhibited angiogenesis through interaction with Lewis Y antigen. This study showed two opposite functions of TM in angiogenesis – FGFR1 mediated rTMD23-induced angiogenesis and rTMD1 inhibited angiogenesis through interaction with Lewis Y antigen. In conclusion, we demonstrated that proangiogenic and antiangiogenic activities reside within molecule TM, thus TM functions as a crosslinking point for blood coagulation, inflammatory reaction, and angiogenesis.
論文目次 Abstract 1
Abstract in Chinese 2
Acknowledgement 3
Contents 4
Table contents 6
Figure contents 7
Appendix contents 8
Abbreviations 9

Chapter 1 Introduction 11
1-1 Angiogenesis 12
1-1.1 Sprouting angiogenesis 13
1-1.2 Endothelial adherens junctions in sprouting angiogenesis 14
1-1.3 Angiogenic promoters and inhibitors 15
1-2 Thrombomodulin (TM) 17
1-2.1 Discovery of TM 17
1-2.2 THBD gene 17
1-2.3 Structure of TM 17
1-2.4 Expression and function of TM in different cell types 19
1-2.5 Soluble TM 22
1-2.6 TM and inflammation 23
1-2.7 TM and angiogenesis 25
1-3 Objectives of study 26
1-3.1 rTMD23 26
1-3.2 rTMD1 27
Chapter 2 Materials and methods 28
2-1 Expression, purification, and characterization of recombinant TM domain (rTMD) proteins and the AAV expression system 29
2-2 Protein C activity assay 30
2-3 Cell cultures 31
2-4 Cell proliferation assay 31
2-5 Cell migration assay 32
2-6 In vitro vascular tube formation assay 32
2-7 Heparin binding assay and rTMD23-Sepharose pull down assay 33
2-8 Signal transduction assay and immunoprecipitation 34
2-9 ELISA assay 34
2-10 Labeling of rTMD1 35
2-11 Surface plasmon resonance (SPR) assay 35
2-12 Immunofluorescence and confocal microscopy 35
2-13 Corneal angiogenesis assay 36
2-14 In vivo Matrigel angiogenesis assay 37
2-15 Xenografts of Lewis lung carcinoma cells 38
2-16 Animal care 38
2-17 Statistical analysis 38
Chapter 3 FGFR1 mediates recombinant thrombomodulin domains-induced angiogenesis 39
3-1 Abstract 40
3-2 Introduction 41
3-3 Results 42
3-4 Discussion 45
Chapter 4 The recombinant lectin-like domain of thrombomodulin inhibits angiogenesis through interaction with Lewis Y antigen 49
4-1 Abstract 50
4-2 Introduction 51
4-3 Results 52
4-4 Discussion 58
Chapter 5 Discussion 62
5-1 The possible mechanism by which lectin-like domain of TM interferes with its EGF-like domain-mediated angiogenesis 63
5-2 The effect of TM on cancer 63
5-3 The role of TM in vascular endothelial tube formation 64
Chapter 6 Summary and prospect 66
References 68
Tables 82
Figures 84
Appendices 114
Curriculum vitae 121
參考文獻 Abeyama, K., Stern, D.M., Ito, Y., Kawahara, K., Yoshimoto, Y., Tanaka, M., Uchimura, T., Ida, N., Yamazaki, Y., Yamada, S., et al. (2005). The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115, 1267-1274.

Abraham, S., Yeo, M., Montero-Balaguer, M., Paterson, H., Dejana, E., Marshall, C.J., and Mavria, G. (2009). VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol 19, 668-674.

Adams, R.H., and Alitalo, K. (2007). Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8, 464-478.

Almagro, S., Durmort, C., Chervin-Petinot, A., Heyraud, S., Dubois, M., Lambert, O., Maillefaud, C., Hewat, E., Schaal, J.P., Huber, P., et al. (2010). The motor protein myosin-X transports VE-cadherin along filopodia to allow the formation of early endothelial cell-cell contacts. Mol Cell Biol 30, 1703-1717.

Bae, J.S., and Rezaie, A.R. (2011). Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood 118, 3952-3959.

Ballmer, K., and Burger, M.M. (1980). Modulation of EGF binding and action by succinylated concanavalin A in fibroblast cell cultures. J Supramol Struct 14, 209-214.

Bansal, R., Magge, S., and Winkler, S. (2003). Specific inhibitor of FGF receptor signaling: FGF-2-mediated effects on proliferation, differentiation, and MAPK activation are inhibited by PD173074 in oligodendrocyte-lineage cells. J Neurosci Res 74, 486-493.

Basu, A., Murthy, U., Rodeck, U., Herlyn, M., Mattes, L., and Das, M. (1987). Presence of tumor-associated antigens in epidermal growth factor receptors from different human carcinomas. Cancer Res 47, 2531-2536.

Beenken, A., and Mohammadi, M. (2009). The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8, 235-253.

Bergers, G., and Benjamin, L.E. (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3, 401-410.

Boehme, M.W., Galle, P., and Stremmel, W. (2002). Kinetics of thrombomodulin release and endothelial cell injury by neutrophil-derived proteases and oxygen radicals. Immunology 107, 340-349.

Boffa, M.C., Burke, B., and Haudenschild, C.C. (1987). Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem 35, 1267-1276.

Buccione, R., Orth, J.D., and McNiven, M.A. (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5, 647-657.

Carey, D.J. (1997). Syndecans: multifunctional cell-surface co-receptors. Biochem J 327, 1-16.

Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nat Med 6, 389-395.

Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438, 932-936.


Carmeliet, P., and Jain, R.K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307.

Chan, S.H., Chen, J.H., Li, Y.H., Lin, L.J., and Tsai, L.M. (2006). Increasing post-event plasma thrombomodulin level associates with worse outcome in survival of acute coronary syndrome. Int J Cardiol 111, 280-285.

Cheng, T.L., Wu, Y.T., Lin, H.Y., Hsu, F.C., Liu, S.K., Chang, B.I., Chen, W.S., Lai, C.H., Shi, G.Y., and Wu, H.L. (2011). Functions of Rhomboid Family Protease RHBDL2 and Thrombomodulin in Wound Healing. J Invest Dermatol 131, 2486-2494.

Colotta, F., Sciacca, F.L., Sironi, M., Luini, W., Rabiet, M.J., and Mantovani, A. (1994). Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin. Am J Pathol 144, 975-985.

Conway, E.M., Nowakowski, B., and Steiner-Mosonyi, M. (1992). Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood 80, 1254-1263.

Conway, E.M., Van de Wouwer, M., Pollefeyt, S., Jurk, K., Van Aken, H., De Vriese, A., Weitz, J.I., Weiler, H., Hellings, P.W., Schaeffer, P., et al. (2002). The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196, 565-577.

Corada, M., Zanetta, L., Orsenigo, F., Breviario, F., Lampugnani, M.G., Bernasconi, S., Liao, F., Hicklin, D.J., Bohlen, P., and Dejana, E. (2002). A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100, 905-911.

Corbacho, A.M., Martinez De La Escalera, G., and Clapp, C. (2002). Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173, 219-238.

Daimon, T., and Okuma, Y. (2004). Localization of thrombomodulin in pericryptal fibroblasts of the rat duodenum. Histochem Cell Biol 121, 311-317.

Deng, C.X., Wynshaw-Boris, A., Shen, M.M., Daugherty, C., Ornitz, D.M., and Leder, P. (1994). Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 8, 3045-3057.

Eilken, H.M., and Adams, R.H. (2010). Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22, 617-625.

Esmon, C.T., and Owen, W.G. (1981). Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci U S A 78, 2249-2252.

Esmon, C.T., and Owen, W.G. (2004). The discovery of thrombomodulin. J Thromb Haemost 2, 209-213.

Esmon, N.L., Carroll, R.C., and Esmon, C.T. (1983). Thrombomodulin blocks the ability of thrombin to activate platelets. J Biol Chem 258, 12238-12242.

Esmon, N.L., Owen, W.G., and Esmon, C.T. (1982). Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem 257, 859-864.


Fang, S., and Salven, P. (2011). Stem cells in tumor angiogenesis. J Mol Cell Cardiol 50, 290-295.

Farhan, H., Schuster, C., Klinger, M., Weisz, E., Waxenecker, G., Schuster, M., Sexl, V., Mudde, G.C., Freissmuth, M., and Kircheis, R. (2006). Inhibition of xenograft tumor growth and down-regulation of ErbB receptors by an antibody directed against Lewis Y antigen. J Pharmacol Exp Ther 319, 1459-1466.

Feistritzer, C., and Riewald, M. (2005). Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105, 3178-3184.

Felbor, U., Dreier, L., Bryant, R.A., Ploegh, H.L., Olsen, B.R., and Mothes, W. (2000). Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 19, 1187-1194.

Ferrara, N., and Kerbel, R.S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967-974.

Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182-1186.

Fournier, G.A., Lutty, G.A., Watt, S., Fenselau, A., and Patz, A. (1981). A corneal micropocket assay for angiogenesis in the rat eye. Invest Ophthalmol Vis Sci 21, 351-354.

Freeman, M. (2008). Rhomboid proteases and their biological functions. Annu Rev Genet 42, 191-210.

Furuta, J., Kaneda, A., Umebayashi, Y., Otsuka, F., Sugimura, T., and Ushijima, T. (2005). Silencing of the thrombomodulin gene in human malignant melanoma. Melanoma Res 15, 15-20.

Garcia-Vallejo, J.J., van Liempt, E., da Costa Martins, P., Beckers, C., van het Hof, B., Gringhuis, S.I., Zwaginga, J.J., van Dijk, W., Geijtenbeek, T.B., van Kooyk, Y., et al. (2008). DC-SIGN mediates adhesion and rolling of dendritic cells on primary human umbilical vein endothelial cells through LewisY antigen expressed on ICAM-2. Mol Immunol 45, 2359-2369.

Gardella, S., Andrei, C., Ferrera, D., Lotti, L.V., Torrisi, M.R., Bianchi, M.E., and Rubartelli, A. (2002). The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3, 995-1001.

Gerwins, P., Skoldenberg, E., and Claesson-Welsh, L. (2000). Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol 34, 185-194.

Geudens, N., Van de Wouwer, M., Vanaudenaerde, B.M., Vos, R., Van De Wauwer, C., Verleden, G.M., Verbeken, E., Lerut, T., Van Raemdonck, D.E., and Conway, E.M. (2008). The lectin-like domain of thrombomodulin protects against ischaemia-reperfusion lung injury. Eur Respir J 32, 862-870.

Gordon, E.M., Venkatesan, N., Salazar, R., Tang, H., Schmeidler-Sapiro, K., Buckley, S., Warburton, D., and Hall, F.L. (1996). Factor XII-induced mitogenesis is mediated via a distinct signal transduction pathway that activates a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 93, 2174-2179.

Gray, A., Dull, T.J., and Ullrich, A. (1983). Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor. Nature 303, 722-725.

Grazia Lampugnani, M., Zanetti, A., Corada, M., Takahashi, T., Balconi, G., Breviario, F., Orsenigo, F., Cattelino, A., Kemler, R., Daniel, T.O., et al. (2003). Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 161, 793-804.

Halloran, M.M., Carley, W.W., Polverini, P.J., Haskell, C.J., Phan, S., Anderson, B.J., Woods, J.M., Campbell, P.L., Volin, M.V., Backer, A.E., et al. (2000). Ley/H: an endothelial-selective, cytokine-inducible, angiogenic mediator. J Immunol 164, 4868-4877.

Hamada, H., Ishii, H., Sakyo, K., Horie, S., Nishiki, K., and Kazama, M. (1995). The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood 86, 225-233.

Hanly, A.M., and Winter, D.C. (2007). The role of thrombomodulin in malignancy. Semin Thromb Hemost 33, 673-679.

Harris, E.S., and Nelson, W.J. (2010). VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr Opin Cell Biol 22, 651-658.

Healy, A.M., Rayburn, H.B., Rosenberg, R.D., and Weiler, H. (1995). Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci U S A 92, 850-854.

Heilbronn, R., and Weger, S. (2010). Viral vectors for gene transfer: current status of gene therapeutics. Handb Exp Pharmacol, 143-170.

Hellstrom, M., Phng, L.K., Hofmann, J.J., Wallgard, E., Coultas, L., Lindblom, P., Alva, J., Nilsson, A.K., Karlsson, L., Gaiano, N., et al. (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776-780.

Higashiyama, S., Abraham, J.A., Miller, J., Fiddes, J.C., and Klagsbrun, M. (1991). A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 251, 936-939.

Hirose, K., Okajima, K., Taoka, Y., Uchiba, M., Tagami, H., Nakano, K., Utoh, J., Okabe, H., and Kitamura, N. (2000). Activated protein C reduces the ischemia/reperfusion-induced spinal cord injury in rats by inhibiting neutrophil activation. Ann Surg 232, 272-280.

Holgersson, J., Breimer, M.E., and Samuelsson, B.E. (1992). Basic biochemistry of cell surface carbohydrates and aspects of the tissue distribution of histo-blood group ABH and related glycosphingolipids. APMIS Suppl 27, 18-27.

Horowitz, A., Tkachenko, E., and Simons, M. (2002). Fibroblast growth factor-specific modulation of cellular response by syndecan-4. J Cell Biol 157, 715-725.

Horowitz, N.A., Blevins, E.A., Miller, W.M., Perry, A.R., Talmage, K.E., Mullins, E.S., Flick, M.J., Queiroz, K.C., Shi, K., Spek, C.A., et al. (2011). Thrombomodulin is a determinant of metastasis through a mechanism linked to the thrombin binding domain but not the lectin-like domain. Blood 118, 2889-2896.

Hosaka, Y., Higuchi, T., Tsumagari, M., and Ishii, H. (2000). Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Lett 161, 231-240.

Huang, H.C., Shi, G.Y., Jiang, S.J., Shi, C.S., Wu, C.M., Yang, H.Y., and Wu, H.L. (2003). Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 278, 46750-46759.

Iba, T., Yagi, Y., Kidokoro, A., Fukunaga, M., and Fukunaga, T. (1995). Increased plasma levels of soluble thrombomodulin in patients with sepsis and organ failure. Surg Today 25, 585-590.

Iino, S., Abeyama, K., Kawahara, K., Yamakuchi, M., Hashiguchi, T., Matsukita, S., Yonezawa, S., Taniguchi, S., Nakata, M., Takao, S., et al. (2004). The antimetastatic role of thrombomodulin expression in islet cell-derived tumors and its diagnostic value. Clin Cancer Res 10, 6179-6188.

Ikeda, T., Ishii, H., Higuchi, T., Sato, K., Hayashi, Y., Ikeda, K., and Hirabayashi, Y. (2000). Localization of thrombomodulin in the anterior segment of the human eye. Invest Ophthalmol Vis Sci 41, 3383-3390.

Ileri, M., Hisar, I., Yetkin, E., Kosar, F., Cehreli, S., Korkmaz, S., and Demirkan, D. (2001). Increased levels of plasma thrombomodulin in patients with acute myocardial infarction who had thrombolytic therapy and achieved successful reperfusion. Clin Cardiol 24, 377-379.

Isermann, B., Hendrickson, S.B., Hutley, K., Wing, M., and Weiler, H. (2001a). Tissue-restricted expression of thrombomodulin in the placenta rescues thrombomodulin-deficient mice from early lethality and reveals a secondary developmental block. Development 128, 827-838.

Isermann, B., Hendrickson, S.B., Zogg, M., Wing, M., Cummiskey, M., Kisanuki, Y.Y., Yanagisawa, M., and Weiler, H. (2001b). Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest 108, 537-546.

Ishii, H., and Majerus, P.W. (1985). Thrombomodulin is present in human plasma and urine. J Clin Invest 76, 2178-2181.

Ishii, H., Uchiyama, H., and Kazama, M. (1991). Soluble thrombomodulin antigen in conditioned medium is increased by damage of endothelial cells. Thromb Haemost 65, 618-623.

Ito, T., Kawahara, K., Okamoto, K., Yamada, S., Yasuda, M., Imaizumi, H., Nawa, Y., Meng, X., Shrestha, B., Hashiguchi, T., et al. (2008). Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler Thromb Vasc Biol 28, 1825-1830.

Jackman, R.W., Beeler, D.L., Fritze, L., Soff, G., and Rosenberg, R.D. (1987). Human thrombomodulin gene is intron depleted: nucleic acid sequences of the cDNA and gene predict protein structure and suggest sites of regulatory control. Proc Natl Acad Sci U S A 84, 6425-6429.

Jackson, C.J., Xue, M., Thompson, P., Davey, R.A., Whitmont, K., Smith, S., Buisson-Legendre, N., Sztynda, T., Furphy, L.J., Cooper, A., et al. (2005). Activated protein C prevents inflammation yet stimulates angiogenesis to promote cutaneous wound healing. Wound Repair Regen 13, 284-294.

Jackson, D.E., Tetaz, T.J., Salem, H.H., and Mitchell, C.A. (1994). Purification and characterization of two forms of soluble thrombomodulin from human urine. Eur J Biochem 221, 1079-1087.

Kao, Y.C., Wu, L.W., Shi, C.S., Chu, C.H., Huang, C.W., Kuo, C.P., Sheu, H.M., Shi, G.Y., and Wu, H.L. (2010). Downregulation of thrombomodulin, a novel target of Snail, induces tumorigenesis through epithelial-mesenchymal transition. Mol Cell Biol 30, 4767-4785.

Kaplanski, G., Marin, V., Fabrigoule, M., Boulay, V., Benoliel, A.M., Bongrand, P., Kaplanski, S., and Farnarier, C. (1998). Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood 92, 1259-1267.

Kawanami, O., Jin, E., Ghazizadeh, M., Fujiwara, M., Jiang, L., Nagashima, M., Shimizu, H., Takemura, T., Ohaki, Y., Arai, S., et al. (2000). Heterogeneous distribution of thrombomodulin and von Willebrand factor in endothelial cells in the human pulmonary microvessels. J Nihon Med Sch 67, 118-125.

Kenyon, B.M., Voest, E.E., Chen, C.C., Flynn, E., Folkman, J., and D'Amato, R.J. (1996). A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37, 1625-1632.

Kiselyov, V.V., Skladchikova, G., Hinsby, A.M., Jensen, P.H., Kulahin, N., Soroka, V., Pedersen, N., Tsetlin, V., Poulsen, F.M., Berezin, V., et al. (2003). Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11, 691-701.

Klinger, M., Farhan, H., Just, H., Drobny, H., Himmler, G., Loibner, H., Mudde, G.C., Freissmuth, M., and Sexl, V. (2004). Antibodies directed against Lewis-Y antigen inhibit signaling of Lewis-Y modified ErbB receptors. Cancer Res 64, 1087-1093.

Koeppe, J.R., Beach, M.A., Baerga-Ortiz, A., Kerns, S.J., and Komives, E.A. (2008). Mutations in the fourth EGF-like domain affect thrombomodulin-induced changes in the active site of thrombin. Biochemistry 47, 10933-10939.

Komi-Kuramochi, A., Kawano, M., Oda, Y., Asada, M., Suzuki, M., Oki, J., and Imamura, T. (2005). Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. J Endocrinol 186, 273-289.

Kurosawa, S., Stearns, D.J., Jackson, K.W., and Esmon, C.T. (1988). A 10-kDa cyanogen bromide fragment from the epidermal growth factor homology domain of rabbit thrombomodulin contains the primary thrombin binding site. J Biol Chem 263, 5993-5996.

Lampugnani, M.G., Orsenigo, F., Gagliani, M.C., Tacchetti, C., and Dejana, E. (2006). Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174, 593-604.

Le Pendu, J., Marionneau, S., Cailleau-Thomas, A., Rocher, J., Le Moullac-Vaidye, B., and Clement, M. (2001). ABH and Lewis histo-blood group antigens in cancer. APMIS 109, 9-31.

Leslie, J.D., Ariza-McNaughton, L., Bermange, A.L., McAdow, R., Johnson, S.L., and Lewis, J. (2007). Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134, 839-844.

Li, J.M., Singh, M.J., Itani, M., Vasiliu, C., Hendricks, G., Baker, S.P., Hale, J.E., Rohrer, M.J., Cutler, B.S., and Nelson, P.R. (2004). Recombinant human thrombomodulin inhibits arterial neointimal hyperplasia after balloon injury. J Vasc Surg 39, 1074-1083.

Li, J.Y., Su, C.H., Wu, Y.J., Tien, T.Y., Hsieh, C.L., Chen, C.H., Tseng, Y.M., Shi, G.Y., Wu, H.L., Tsai, C.H., et al. (2011). Therapeutic Angiogenesis of Human Early Endothelial Progenitor Cells Is Enhanced by Thrombomodulin. Arterioscler Thromb Vasc Biol 31, 2518-2525

Li, Y.H., Chung, H.C., Luo, C.Y., Chao, T.H., Shyu, K.G., Shi, G.Y., and Wu, H.L. (2010). Thrombomodulin is upregulated in cardiomyocytes during cardiac hypertrophy and prevents the progression of contractile dysfunction. J Card Fail 16, 980-990.

Li, Y.H., Liu, S.L., Shi, G.Y., Tseng, G.H., Liu, P.Y., and Wu, H.L. (2006). Thrombomodulin plays an important role in arterial remodeling and neointima formation in mouse carotid ligation model. Thromb Haemost 95, 128-133.

Liao, F., Doody, J.F., Overholser, J., Finnerty, B., Bassi, R., Wu, Y., Dejana, E., Kussie, P., Bohlen, P., and Hicklin, D.J. (2002). Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res 62, 2567-2575.

Liekens, S., De Clercq, E., and Neyts, J. (2001). Angiogenesis: regulators and clinical applications. Biochem Pharmacol 61, 253-270.

Lindahl, A.K., Boffa, M.C., and Abildgaard, U. (1993). Increased plasma thrombomodulin in cancer patients. Thromb Haemost 69, 112-114.

Lloyd, K.O. (2000). The chemistry and immunochemistry of blood group A, B, H, and Lewis antigens: past, present and future. Glycoconj J 17, 531-541.

Lobov, I.B., Renard, R.A., Papadopoulos, N., Gale, N.W., Thurston, G., Yancopoulos, G.D., and Wiegand, S.J. (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104, 3219-3224.

Lohi, O., Urban, S., and Freeman, M. (2004). Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr Biol 14, 236-241.

Lu, R.L., Esmon, N.L., Esmon, C.T., and Johnson, A.E. (1989). The active site of the thrombin-thrombomodulin complex. A fluorescence energy transfer measurement of its distance above the membrane surface. J Biol Chem 264, 12956-12962.

MacGregor, I.R., Perrie, A.M., Donnelly, S.C., and Haslett, C. (1997). Modulation of human endothelial thrombomodulin by neutrophils and their release products. Am J Respir Crit Care Med 155, 47-52.

Maglott, D.R., Feldblyum, T.V., Durkin, A.S., and Nierman, W.C. (1996). Radiation hybrid mapping of SNAP, PCSK2, and THBD (human chromosome 20p). Mamm Genome 7, 400-401.

Maillard, C., Berruyer, M., Serre, C.M., Amiral, J., Dechavanne, M., and Delmas, P.D. (1993). Thrombomodulin is synthesized by osteoblasts, stimulated by 1,25-(OH)2D3 and activates protein C at their cell membrane. Endocrinology 133, 668-674.

Makanya, A.N., Hlushchuk, R., and Djonov, V.G. (2009). Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12, 113-123.

Maruyama, I., Bell, C.E., and Majerus, P.W. (1985). Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J Cell Biol 101, 363-371.

May, C., Doody, J.F., Abdullah, R., Balderes, P., Xu, X., Chen, C.P., Zhu, Z., Shapiro, L., Kussie, P., Hicklin, D.J., et al. (2005). Identification of a transiently exposed VE-cadherin epitope that allows for specific targeting of an antibody to the tumor neovasculature. Blood 105, 4337-4344.

McCachren, S.S., Diggs, J., Weinberg, J.B., and Dittman, W.A. (1991). Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78, 3128-3132.


Meininger, D.P., Hunter, M.J., and Komives, E.A. (1995). Synthesis, activity, and preliminary structure of the fourth EGF-like domain of thrombomodulin. Protein Sci 4, 1683-1695.

Miller, D.L., Ortega, S., Bashayan, O., Basch, R., and Basilico, C. (2000). Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 20, 2260-2268.

Moehler, T.M., Sauer, S., Witzel, M., Andrulis, M., Garcia-Vallejo, J.J., Grobholz, R., Willhauck-Fleckenstein, M., Greiner, A., Goldschmidt, H., and Schwartz-Albiez, R. (2008). Involvement of alpha 1-2-fucosyltransferase I (FUT1) and surface-expressed Lewis(y) (CD174) in first endothelial cell-cell contacts during angiogenesis. J Cell Physiol 215, 27-36.

Mohammadi, M., Dikic, I., Sorokin, A., Burgess, W.H., Jaye, M., and Schlessinger, J. (1996). Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 16, 977-989.

Mohammadi, M., Froum, S., Hamby, J.M., Schroeder, M.C., Panek, R.L., Lu, G.H., Eliseenkova, A.V., Green, D., Schlessinger, J., and Hubbard, S.R. (1998). Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 17, 5896-5904.

Montero-Balaguer, M., Swirsding, K., Orsenigo, F., Cotelli, F., Mione, M., and Dejana, E. (2009). Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PloS one 4, e5772.

Murakami, K., Okajima, K., Uchiba, M., Johno, M., Nakagaki, T., Okabe, H., and Takatsuki, K. (1997). Activated protein C prevents LPS-induced pulmonary vascular injury by inhibiting cytokine production. Am J Physiol 272, L197-202.

Murakami, M., Elfenbein, A., and Simons, M. (2008). Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res 78, 223-231.

Murphy, D.A., and Courtneidge, S.A. (2011). The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12, 413-426.

Nagato, M., Okamoto, K., Abe, Y., Higure, A., and Yamaguchi, K. (2009). Recombinant human soluble thrombomodulin decreases the plasma high-mobility group box-1 protein levels, whereas improving the acute liver injury and survival rates in experimental endotoxemia. Crit Care Med 37, 2181-2186.

Nguyen, M., Arkell, J., and Jackson, C.J. (2000). Activated protein C directly activates human endothelial gelatinase A. J Biol Chem 275, 9095-9098.

Niimi, S., Harashima, M., Takayama, K., Hara, M., Hyuga, M., Seki, T., Ariga, T., Kawanishi, T., and Hayakawa, T. (2005). Thrombomodulin enhances the invasive activity of mouse mammary tumor cells. J Biochem 137, 579-586.

O'Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., and Folkman, J. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277-285.

O'Reilly, M.S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R.A., Moses, M., Lane, W.S., Cao, Y., Sage, E.H., Folkman, J.C.I.N.C.O., et al. (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-328.


Oida, K., Takai, H., Maeda, H., Takahashi, S., Tamai, T., Nakai, T., Miyabo, S., and Ishii, H. (1990). Plasma thrombomodulin concentration in diabetes mellitus. Diabetes Res Clin Pract 10, 193-196.

Ono, M., and Kuwano, M. (2006). Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res 12, 7242-7251.

Ozaki, T., Anas, C., Maruyama, S., Yamamoto, T., Yasuda, K., Morita, Y., Ito, Y., Gotoh, M., Yuzawa, Y., and Matsuo, S. (2008). Intrarenal administration of recombinant human soluble thrombomodulin ameliorates ischaemic acute renal failure. Nephrol Dial Transplant 23, 110-119.

Panayotou, G., End, P., Aumailley, M., Timpl, R., and Engel, J. (1989). Domains of laminin with growth-factor activity. Cell 56, 93-101.

Peterson, J.J., Rayburn, H.B., Lager, D.J., Raife, T.J., Kealey, G.P., Rosenberg, R.D., and Lentz, S.R. (1999). Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds. Am J Pathol 155, 1569-1575.

Phng, L.K., and Gerhardt, H. (2009). Angiogenesis: a team effort coordinated by notch. Dev Cell 16, 196-208.

Pindon, A., Hantai, D., Jandrot-Perrus, M., and Festoff, B.W. (1997). Novel expression and localization of active thrombomodulin on the surface of mouse brain astrocytes. Glia 19, 259-268.

Potente, M., Gerhardt, H., and Carmeliet, P. (2011). Basic and therapeutic aspects of angiogenesis. Cell 146, 873-887.

Powers, C.J., McLeskey, S.W., and Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7, 165-197.

Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., and Ullrich, A. (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884-888.

Presta, M., Dell'Era, P., Mitola, S., Moroni, E., Ronca, R., and Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16, 159-178.

Prieto, J.H., Sampoli Benitez, B.A., Melacini, G., Johnson, D.A., Wood, M.J., and Komives, E.A. (2005). Dynamics of the fragment of thrombomodulin containing the fourth and fifth epidermal growth factor-like domains correlate with function. Biochemistry 44, 1225-1233.

Raife, T.J., Lager, D.J., Madison, K.C., Piette, W.W., Howard, E.J., Sturm, M.T., Chen, Y., and Lentz, S.R. (1994). Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J Clin Invest 93, 1846-1851.

Richardson, M.R., and Yoder, M.C. (2011). Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol 50, 266-272.

Riewald, M., Petrovan, R.J., Donner, A., Mueller, B.M., and Ruf, W. (2002). Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296, 1880-1882.


Rijneveld, A.W., Weijer, S., Florquin, S., Esmon, C.T., Meijers, J.C., Speelman, P., Reitsma, P.H., Ten Cate, H., and van der Poll, T. (2004). Thrombomodulin mutant mice with a strongly reduced capacity to generate activated protein C have an unaltered pulmonary immune response to respiratory pathogens and lipopolysaccharide. Blood 103, 1702-1709.

Risau, W. (1997). Mechanisms of angiogenesis. Nature 386, 671-674.

Rogers, M.S., Birsner, A.E., and D'Amato, R.J. (2007). The mouse cornea micropocket angiogenesis assay. Nat Protoc 2, 2545-2550.

Ruf, W., Furlan-Freguia, C., and Niessen, F. (2009). Vascular and dendritic cell coagulation signaling in sepsis progression. J Thromb Haemost 7 Suppl 1, 118-121.

Rusnati, M., and Presta, M. (1996). Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans. Biological implications in neovascularization. Int J Clin Lab Res 26, 15-23.

Salem, H.H., Maruyama, I., Ishii, H., and Majerus, P.W. (1984). Isolation and characterization of thrombomodulin from human placenta. J Biol Chem 259, 12246-12251.

Salomaa, V., Matei, C., Aleksic, N., Sansores-Garcia, L., Folsom, A.R., Juneja, H., Chambless, L.E., Wu, K.K.C.I.N.L.N., and Pmid (1999). Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study. Lancet 353, 1729-1734.

Sampoli Benitez, B.A., Hunter, M.J., Meininger, D.P., and Komives, E.A. (1997). Structure of the fifth EGF-like domain of thrombomodulin: An EGF-like domain with a novel disulfide-bonding pattern. J Mol Biol 273, 913-926.

Scaffidi, P., Misteli, T., and Bianchi, M.E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195.

Schmeidler-Sapiro, K.T., Ratnoff, O.D., and Gordon, E.M. (1991). Mitogenic effects of coagulation factor XII and factor XIIa on HepG2 cells. Proc Natl Acad Sci U S A 88, 4382-4385.

Schreiber, A.B., Winkler, M.E., and Derynck, R. (1986). Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232, 1250-1253.

Shi, C.S., Shi, G.Y., Chang, Y.S., Han, H.S., Kuo, C.H., Liu, C., Huang, H.C., Chang, Y.J., Chen, P.S., and Wu, H.L. (2005). Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation 111, 1627-1636.

Shi, C.S., Shi, G.Y., Hsiao, S.M., Kao, Y.C., Kuo, K.L., Ma, C.Y., Kuo, C.H., Chang, B.I., Chang, C.F., Lin, C.H., et al. (2008). Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 112, 3661-3670.

Shing, Y., Folkman, J., Sullivan, R., Butterfield, C., Murray, J., and Klagsbrun, M. (1984). Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223, 1296-1299.

Shogo Takano, S.K.S.O., and Nobuo, A. (1990). Plasma Thrombomodulin in Health and Diseases. Blood 76, 2024-2029.

Steinfeld, R., Van Den Berghe, H., and David, G. (1996). Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol 133, 405-416.

Steinhoff, M., Buddenkotte, J., Shpacovitch, V., Rattenholl, A., Moormann, C., Vergnolle, N., Luger, T.A., and Hollenberg, M.D. (2005). Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26, 1-43.

Suehiro, T., Shimada, M., Matsumata, T., Taketomi, A., Yamamoto, K., and Sugimachi, K. (1995). Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma. Hepatology 21, 1285-1290.

Suzuki, K., Kusumoto, H., Deyashiki, Y., Nishioka, J., Maruyama, I., Zushi, M., Kawahara, S., Honda, G., Yamamoto, S., and Horiguchi, S. (1987). Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J 6, 1891-1897.

Suzuki, K., Nishioka, J., Hayashi, T., and Kosaka, Y. (1988). Functionally active thrombomodulin is present in human platelets. J Biochem 104, 628-632.

Takagi, T., Taguchi, O., Toda, M., Boveda Ruiz, D., Gil Bernabe, P., D'Alessandro-Gabazza, C.N., Miyake, Y., Kobayashi, T., Aoki, S., Chiba, F., et al. (2010). Inhibition of Allergic Bronchial Asthma by Thrombomodulin is Mediated by Dendritic Cells. Am J Resp Crit Care Med 183, 31-42

Tanaka, A., Ishii, H., Hiraishi, S., Kazama, M., and Maezawa, H. (1991). Increased thrombomodulin values in plasma of diabetic men with microangiopathy. Clin Chem 37, 269-272.

Taraboletti, G., Morbidelli, L., Donnini, S., Parenti, A., Granger, H.J., Giavazzi, R., and Ziche, M. (2000). The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J 14, 1674-1676.

Tohda, G., Oida, K., Okada, Y., Kosaka, S., Okada, E., Takahashi, S., Ishii, H., and Miyamori, I. (1998). Expression of thrombomodulin in atherosclerotic lesions and mitogenic activity of recombinant thrombomodulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 18, 1861-1869.

Tolkatchev, D., Ng, A., Zhu, B., and Ni, F. (2000). Identification of a thrombin-binding region in the sixth epidermal growth factor-like repeat of human thrombomodulin. Biochemistry 39, 10365-10372.

Torsney, E., and Xu, Q. (2011). Resident vascular progenitor cells. J Mol Cell Cardiol 50, 304-311.

Turner, N., and Grose, R. (2010). Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10, 116-129.

Uchiba, M., Okajima, K., Oike, Y., Ito, Y., Fukudome, K., Isobe, H., and Suda, T. (2004). Activated protein C induces endothelial cell proliferation by mitogen-activated protein kinase activation in vitro and angiogenesis in vivo. Circ Res 95, 34-41.

Uehara, S., Gotoh, K., and Handa, H. (2001). Separation and characterization of the molecular species of thrombomodulin in the plasma of diabetic patients. Thromb Res 104, 325-332.

Urban, S., Lee, J.R., and Freeman, M. (2001). Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173-182.

Urban, S., Lee, J.R., and Freeman, M. (2002). A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J 21, 4277-4286.

Van de Wouwer, M., and Conway, E.M. (2004). Novel functions of thrombomodulin in inflammation. Crit Care Med 32, S254-261.

Van de Wouwer, M., Plaisance, S., De Vriese, A., Waelkens, E., Collen, D., Persson, J., Daha, M.R., and Conway, E.M. (2006). The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost 4, 1813-1824.

van Iersel, T., Stroissnig, H., Giesen, P., Wemer, J., and Wilhelm-Ogunbiyi, K. (2011). Phase I study of Solulin, a novel recombinant soluble human thrombomodulin analogue. Thromb Haemost 105, 302-312.

Villoutreix B. and Dahlback B. (1998). Molecular Model for the C-type Lectin Domain of Human Thrombomodulin. J Mol Model 4, 310-322.

Wallez, Y., and Huber, P. (2008). Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 1778, 794-809.

Wang, L., Bastarache, J.A., Wickersham, N., Fang, X., Matthay, M.A., and Ware, L.B. (2007). Novel role of the human alveolar epithelium in regulating intra-alveolar coagulation. Am J Respir Cell Mol Biol 36, 497-503.

Wang, W., Nagashima, M., Schneider, M., Morser, J., and Nesheim, M. (2000). Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation. J Biol Chem 275, 22942-22947.

Wang, X.Q., Zhu, Z.M., Fenderson, B.A., Zeng, G.Q., Cao, Y.J., and Jiang, G.T. (1998). Effects of monoclonal antibody directed to LeY on implantation in the mouse. Mol Hum Reprod 4, 295-300.

Wei, H.J., Li, Y.H., Shi, G.Y., Liu, S.L., Chang, P.C., Kuo, C.H., and Wu, H.L. (2011). Thrombomodulin domains attenuate atherosclerosis by inhibiting thrombin-induced endothelial cell activation. Cardiovasc Res 92, 317-327.

Weidner, N., Semple, J.P., Welch, W.R., and Folkman, J. (1991). Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med 324, 1-8.

Weijer, S., Wieland, C.W., Florquin, S., and van der Poll, T. (2005). A thrombomodulin mutation that impairs activated protein C generation results in uncontrolled lung inflammation during murine tuberculosis. Blood 106, 2761-2768.

Weiler-Guettler, H., Christie, P.D., Beeler, D.L., Healy, A.M., Hancock, W.W., Rayburn, H., Edelberg, J.M., and Rosenberg, R.D. (1998). A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. J Clin Invest 101, 1983-1991.

Weisel, J.W., Nagaswami, C., Young, T.A., and Light, D.R. (1996). The shape of thrombomodulin and interactions with thrombin as determined by electron microscopy. J Biol Chem 271, 31485-31490.

Wen, D.Z., Dittman, W.A., Ye, R.D., Deaven, L.L., Majerus, P.W., and Sadler, J.E. (1987). Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry 26, 4350-4357.

Wen, W., Moses, M.A., Wiederschain, D., Arbiser, J.L., and Folkman, J. (1999). The generation of endostatin is mediated by elastase. Cancer Res 59, 6052-6056.

Wood, M.J., Becvar, L.A., Prieto, J.H., Melacini, G., and Komives, E.A. (2003). NMR structures reveal how oxidation inactivates thrombomodulin. Biochemistry 42, 11932-11942.

Wood, M.J., Helena Prieto, J., and Komives, E.A. (2005). Structural and functional consequences of methionine oxidation in thrombomodulin. Biochim Biophys Acta 1703, 141-147.

Wood, M.J., Sampoli Benitez, B.A., and Komives, E.A. (2000). Solution structure of the smallest cofactor-active fragment of thrombomodulin. Nat Struct Biol 7, 200-204.

Wu, H.L., Lin, C.I., Huang, Y.L., Chen, P.S., Kuo, C.H., Chen, M.S., Wu, G.C., Shi, G.Y., Yang, H.Y., and Lee, H. (2008). Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells. Biochem Biophys Res Commun 367, 162-168.

Wu, K.K., Aleksic, N., Ballantyne, C.M., Ahn, C., Juneja, H., and Boerwinkle, E. (2003). Interaction between soluble thrombomodulin and intercellular adhesion molecule-1 in predicting risk of coronary heart disease. Circulation 107, 1729-1732.

Xiao, X., Li, J., and Samulski, R.J. (1998). Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72, 2224-2232.

Xue, M., Thompson, P., Sambrook, P.N., March, L., and Jackson, C.J. (2006). Activated protein C stimulates expression of angiogenic factors in human skin cells, angiogenesis in the chick embryo and cutaneous wound healing in rodents. Clin Hemorheol Microcirc 34, 153-161.

Yamaguchi, T.P., Harpal, K., Henkemeyer, M., and Rossant, J. (1994). fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8, 3032-3044.

Yamamoto, S., Mizoguchi, T., Tamaki, T., Ohkuchi, M., Kimura, S., and Aoki, N. (1993). Urinary thrombomodulin, its isolation and characterization. J Biochem 113, 433-440.

Yang, J., Meyer, M., Muller, A.K., Bohm, F., Grose, R., Dauwalder, T., Verrey, F., Kopf, M., Partanen, J., Bloch, W., et al. (2010). Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. J Cell Biol 188, 935-952.

Yarden, Y., and Sliwkowski, M.X. (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2, 127-137.

Yayon, A., Klagsbrun, M., Esko, J.D., Leder, P., and Ornitz, D.M. (1991). Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841-848.

Yerkovich, S.T., Roponen, M., Smith, M.E., McKenna, K., Bosco, A., Subrata, L.S., Mamessier, E., Wikstrom, M.E., Le Souef, P., Sly, P.D., et al. (2009). Allergen-enhanced thrombomodulin (blood dendritic cell antigen 3, CD141) expression on dendritic cells is associated with a TH2-skewed immune response. J Allergy Clin Immunol 123, 209-216.e204.

Yin, B.W., Finstad, C.L., Kitamura, K., Federici, M.G., Welshinger, M., Kudryashov, V., Hoskins, W.J., Welt, S., and Lloyd, K.O. (1996). Serological and immunochemical analysis of Lewis y (Ley) blood group antigen expression in epithelial ovarian cancer. Int J Cancer 65, 7.

Zeng, F.Y., Benguria, A., Kafert, S., Andre, S., Gabius, H.J., and Villalobo, A. (1995). Differential response of the epidermal growth factor receptor tyrosine kinase activity to several plant and mammalian lectins. Mol Cell Biochem 142, 117-124.

Zhang, W., Swanson, R., Xiong, Y., Richard, B., and Olson, S.T. (2006). Antiangiogenic antithrombin blocks the heparan sulfate-dependent binding of proangiogenic growth factors to their endothelial cell receptors: evidence for differential binding of antiangiogenic and anticoagulant forms of antithrombin to proangiogenic heparan sulfate domains. J Biol Chem 281, 37302-37310.

Zhang, Y., Weiler-Guettler, H., Chen, J., Wilhelm, O., Deng, Y., Qiu, F., Nakagawa, K., Klevesath, M., Wilhelm, S., Bohrer, H., et al. (1998). Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest 101, 1301-1309.

Zhu, Z.M., Kojima, N., Stroud, M.R., Hakomori, S., and Fenderson, B.A. (1995). Monoclonal antibody directed to Le(y) oligosaccharide inhibits implantation in the mouse. Biol Reprod 52, 903-912.

Zushi, M., Gomi, K., Yamamoto, S., Maruyama, I., Hayashi, T., and Suzuki, K. (1989). The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity. J Biol Chem 264, 10351-10353.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-02-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-02-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw