進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2908202022122100
論文名稱(中文) 臺灣西南海域前緣海脊之逆衝斷層發育及其伴隨的沉積物傳輸系統演化
論文名稱(英文) Study of sediment routing system evolution associated with thrust development in the Frontal Ridge offshore southwestern Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 108
學期 2
出版年 109
研究生(中文) 劉廷毅
研究生(英文) Ting-Yi Liu
學號 L46071031
學位類別 碩士
語文別 中文
論文頁數 109頁
口試委員 指導教授-楊耿明
口試委員-劉家瑄
口試委員-許鶴瀚
口試委員-林殿順
中文關鍵字 台灣西南海域  沉積物傳輸系統  增積楔  同構造堆積 
英文關鍵字 Sediment-routing system  accretionary prism  syn-tectonic deposition  Southwest Taiwan 
學科別分類
中文摘要 海底增積楔中的沉積物傳輸系統和斷層逆衝及其伴隨的褶皺構造高度相關。本研究的主要目的為調查臺灣西南海域正在發育的增積楔前緣其逆衝斷層發育的時間及空間關係如何影響沉積物傳輸路徑。本研究利用震測資料解釋逆衝斷層側向的滑移量變化以及其伴隨的海底水道流向變化。
前緣海脊為臺灣西南海域向西逆衝的增積楔最前緣之地形高區,主要的背斜構造走向為北北西—東南東走向,且背斜的緊密度向東南方減少。在褶皺背翼地層傾角較斷層的斷坡傾角小,生長地層邊界可藉由主要的不整合面及上覆之向西漸薄的楔形地層加以辨識。本研究結果顯示:(1)前緣海脊為兩條不在同一線上的逆斷層滑移作用而成的褶皺,且兩逆斷層開始滑移的時間不同,北邊的逆斷層較早開始滑移;(2)此區域有兩種不同型態的水道,分別是在生長地層發育前堆積的地層中寬廣的水道,以及在生長地層中較狹窄且流向大致和斷層走向平行的水道;(3)由於兩斷層開始滑移時間不同,造成同一時期的水道在南北區域形貌不同,例如,當北邊斷層開始滑移而南邊斷層尚未開始滑移之時,水道在北邊形成狹小V字型水道,而在南邊則形成分支狀水道;(4)背負盆地中的水道的位置受到斷層滑移的影響,逐漸向斷層滑移作用所形成之向斜構造軸部遷移。
英文摘要 In offshore southwestern Taiwan, there are many submarine ridges and canyons formed in the accretionary prism. Because of high rate of sediment supply derived from Taiwan orogen and transported to the accretionary prism with active faulting, the prism has been characterized by dynamic interaction between faulting and sedimentation. The Frontal Ridge is one of the outmost topographic highs in the frontal part of the accretionary prism and has been regarded as the resultant anticlinal fold caused by westward thrusting. The major structural trend of the ridge is NNW-SSE.
This study interpreted a grid of pseudo-three-dimension seismic data and several 2-D seismic sections. We identified the basal boundary of the growth strata that are wedging westward to the ridge. We also measured the throw of faults and delineated geometry of submarine channels. This study conclusively proposes that: (1) the Frontal Ridge is manifestation of two faults linked in sinistral en echelon arrangement and the northern fault developed earlier; (2) a wide submarine fan can be observed in the pre-growth strata; (3) once the northern fault started to develop, narrow channels appeared in growth strata and ran along synclinal axis parallel to the strike of fault; and (5) the flow directions of erosional channels were changed by out-of-sequence thrusting in the piggy-back basin formed in the northern part of study area.
論文目次 中文摘要 ii
英文摘要 iii
致謝 vi
目錄 vii
圖目錄 ix
表目錄 xiii
1 前言 1
1.1. 研究目的 3
2 前人研究與區域地質 4
2.1. 海底扇與海底水道 4
2.2. 背負盆地與生長地層 12
2.3. 臺灣西南海域地形特徵 13
2.4. 臺灣西南海域區域地質 15
3 研究方法與研究資料 21
3.1. 資料 21
3.2. 震測地層學 26
3.2.1. 層序分析 26
3.2.2. 震測相分析 27
3.2.3. 深海地層的震測相 30
4 研究結果 36
4.1. 震測剖面解釋 36
4.2. 前緣逆斷層的三維形貌 63
4.3. 海底塊體崩移滑移面(Mass transport sliding surface, MTSS) 66
4.4. 水道 69
4.5. 地層層序堆疊的三維形貌 74
4.6. 侵蝕型水道 83
5 討論 87
5.1. 斷層連接的滑移量變化 87
5.2. 水道外河堤厚度變化 89
5.3. 海底水道彎曲度變化 91
5.4. 沉積物供應流向演化 96
5.5. 前緣海脊演化 100
6 結論 102
7 文獻 103

參考文獻 Badalini, G., Kneller, B., Winker, C. D., and Weimer, P. (2000). Architecture and Processes in the Late Pleistocene Brazos-Trinity Turbidite System, Gulf of Mexico Continental Slope. In Deep-Water Reservoirs of the World (Vol. 20, pp. 16-34): SEPM Society for Sedimentary Geology.
Boswell, R. (2014). Gas Hydrate Assessment in the Northern Gulf of Mexico: Preliminary Results Reveal New Prospects. Methane Hydrate Newsletter, 14(2), 1-19.
Casciano, C. I., Patacci, M., Longhitano, S. G., Tropeano, M., McCaffrey, W. D., and Di Celma, C. (2019). Multi-scale analysis of a migrating submarine channel system in a tectonically-confined basin: The Miocene Gorgoglione Flysch Formation, southern Italy. Sedimentology, 66(1), 205-240. doi:10.1111/sed.12490
Chi, W.-C., Reed, D., Liu, C.-S., and Lundberg, N. (1998). Distribution of the Bottom-Simulating Reflector in the Offshore Taiwan Collision Zone. Terrestrial Atmospheric and Oceanic Sciences, 9, 779-794. doi:10.3319/TAO.1998.9.4.779(TAICRUST)
Chiang, C.-S., and Yu, H.-S. (2006). Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80(3-4), 199-213. doi:10.1016/j.geomorph.2006.02.008
Clark, I. R., and Cartwright, J. A. (2011). Key controls on submarine channel development in structurally active settings. Marine and Petroleum Geology, 28(7), 1333-1349.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., and Lin, J.-C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. doi:10.1038/nature02150
Deptuck, M. E., Sylvester, Z., and O'Byrne, C. (2012). Pleistocene seascape evolution above a “simple” stepped slope, western Niger Delta. Application of the principles of seismic geomorphology to continental slope and base-of-slope systems: Case studies from sea floor and near–sea floor analog: SEPM Special Publication, 99, 199-222.
Deptuck, M. E., Sylvester, Z., Pirmez, C., and O’Byrne, C. (2007). Migration–aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24(6-9), 406-433.
Deville, E., Mascle, A., Callec, Y., Huyghe, P., Lallemant, S., Lerat, O., .and Granjeon, D. (2015). Tectonics and sedimentation interactions in the east Caribbean subduction zone: An overview from the Orinoco delta and the Barbados accretionary prism. Marine and Petroleum Geology, 64, 76-103. doi:https://doi.org/10.1016/j.marpetgeo.2014.12.015
Dendy, E., and Sloan, J. (1998). Gas Hydrates: Review of Physical/Chemical Properties. Energy and Fuels, 12, 191-196.
Graham, S. A., Dickinson, W. R., and Ingersoll, R. V. (1975). Himalayan-Bengal model for flysch dispersal in the Appalachian-Ouachita system. Geological Society of America Bulletin, 86(3), 273-286.
Haflidason, H., Sejrup, H. P., Nygård, A., Mienert, J., Bryn, P., Lien, R., and Masson, D. (2004). The Storegga Slide: architecture, geometry and slide development. Marine Geology, 213(1-4), 201-234. doi:10.1016/j.margeo.2004.10.007
Han, W.-C., Liu, C.-S., Chi, W.-C., Chen, L., Lin, C.-C., and Chen, S.-C. (2017). Westward advance of the deformation front and evolution of submarine canyons offshore of southwestern Taiwan. Journal of Asian Earth Sciences, 149, 6-19. doi:https://doi.org/10.1016/j.jseaes.2017.07.001
Hsiung, K.-H., Yu, H.-S., and Su, M. (2015). Sedimentation in remnant ocean basin off SW Taiwan with implication for closing northeastern South China Sea. Journal of the Geological Society, 172. doi:10.1144/jgs2014-077
Hsu, H.-H., Liu, C.-S., Yu, H.-S., Chang, J.-H., and Chen, S.-C. (2013). Sediment dispersal and accumulation in tectonic accommodation across the Gaoping Slope, offshore Southwestern Taiwan. Journal of Asian Earth Sciences, 69, 26-38. doi:10.1016/j.jseaes.2013.01.012
Huh, C.-A., Lin, H.-L., Lin, S., and Huang, Y.-W. (2009). Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems, 76(4), 405-416. doi:https://doi.org/10.1016/j.jmarsys.2007.07.009
Ingersoll, R. V. (1988). Tectonics of sedimentary basins. Geological Society of America Bulletin, 100(11), 1704-1719.
Jolly, B. A., Lonergan, L., and Whittaker, A. C. (2016). Growth history of fault-related folds and interaction with seabed channels in the toe-thrust region of the deep-water Niger delta. Marine and Petroleum Geology, 70, 58-76.
Kao, H., Huang, G. C., and Liu, C. S. (2000). Transition from oblique subduction to collision in the nothern Luzon arc-Taiwan region: Contraints from bathymetry and seismic observations. Journal of Geophysical Research. Solid Earth, 105(B2), 3059-3079.
Lin, A. T., Liu, C.-S., Lin, C.-C., Schnurle, P., Chen, G.-Y., Liao, W.-Z., and Wu, M.-S. (2008). Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology, 255(3-4), 186-203. doi:10.1016/j.margeo.2008.10.002
Lin, A. T., Yao, B., Hsu, S.-K., Liu, C.-S., and Huang, C.-Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1-2), 28-42. doi:10.1016/j.tecto.2008.11.004
Lin, C.-C., Lin, A. T.-S., Liu, C.-S., Horng, C.-S., Chen, G.-Y., and Wang, Y. (2013). Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Research, 35(1), 21-35. doi:10.1007/s11001-013-9203-7
Liu, C.-S., Huang, I. L., and Teng, L. S. (1997). Structural features off southwestern Taiwan. Marine Geology, 137(3-4), 305-319.
Liu, C.-S., Lundberg, N., Reed, D. L., and Huang, Y.-L. (1993). Morphological and seismic characteristics of the Kaoping Submarine Canyon. Marine Geology, 111(1), 93-108. doi:https://doi.org/10.1016/0025-3227(93)90190-7
Mitchum, R. M., Jr., Vail, P. R., Sangree, J. B., and Payton, C. E. (1977). Seismic Stratigraphy and Global Changes of Sea Level, Part 6: Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences1. In Seismic Stratigraphy — Applications to Hydrocarbon Exploration (Vol. 26): American Association of Petroleum Geologists.
Moscardelli, L., and Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20(1), 73-98. doi:10.1111/j.1365-2117.2007.00340.x
Posamentier, H. W., and Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73(3), 367-388.
Posamentier, H. W., and Walker, R. G. (2006). Deep-water turbidites and submarine fans. In H. W. Posamentier and R. G. Walker (Eds.), Facies models revisited (pp. 397-520): SEPM Special Publication.
Qin, Y., Alves, T. M., Constantine, J., and Gamboa, D. (2016). Quantitative seismic geomorphology of a submarine channel system in SE Brazil (Espírito Santo Basin): Scale comparison with other submarine channel systems. Marine and Petroleum Geology, 78, 455-473.
Ramirez, S. G., Gulick, S. P. S., and Hayman, N. W. (2015). Early sedimentation and deformation in the Kumano forearc basin linked with Nankai accretionary prism evolution, southwest Japan. Geochemistry, Geophysics, Geosystems, 16(5), 1616-1633. doi:10.1002/2014gc005643
Reed, D. L., Lundberg, N., Liu, C.-S., and Kuo, B.-Y. (1992). Structural relations along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics. Acta Geologica Taiwanica(30), 105-122.
Reimchen, A. P., Hubbard, S. M., Stright, L., and Romans, B. W. (2016). Using sea-floor morphometrics to constrain stratigraphic models of sinuous submarine channel systems. Marine and Petroleum Geology, 77, 92-115.
Salles, L., Ford, M., and Joseph, P. (2014). Characteristics of axially-sourced turbidite sedimentation on an active wedge-top basin (Annot Sandstone, SE France). Marine and Petroleum Geology, 56, 305-323.
Samuel, S. P. (2010). Depositional History of Paleocene Sediments in the Offshore Canterbury Basin, New Zealand.
Sangree, J. B., Widmier, J. M., and Payton, C. E. (1977). Seismic Stratigraphy and Global Changes of Sea Level, Part 9: Seismic Interpretation of Clastic Depositional Facies1. In Seismic Stratigraphy — Applications to Hydrocarbon Exploration (Vol. 26, pp. 0): American Association of Petroleum Geologists.
Shanmugam, G. (2012). New perspectives on deep-water sandstones: Origin, recognition, initiation, and reservoir quality: Elsevier.
Shanmugam, G., and Moiola, R. (1988). Submarine fans: characteristics, models, classification, and reservoir potential. Earth-Science Reviews, 24(6), 383-428.
Stow, D. A. V., Howell, D. G., and Nelson, C. H. (1983). Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems. Geo-Marine Letters, 3(2), 57-64. doi:10.1007/BF02462448
Totake, Y., Butler, R. W. H., Bond, C. E., and Aziz, A. (2018). Analyzing structural variations along strike in a deep-water thrust belt. Journal of Structural Geology, 108, 213-229. doi:https://doi.org/10.1016/j.jsg.2017.06.007
Underwood, M. B., and Moore, G. F. (2012). Evolution of Sedimentary Environments in the Subduction Zone of Southwest Japan: Recent Results from the NanTroSEIZE Kumano Transect. In C. Busby and A. Azor (Eds.), Tectonics of Sedimentary Basins (pp. 310-328): Willey-Blackwell.
Vail, P. R., Todd, R. G., Sangree, J. B., and Payton, C. E. (1977). Seismic Stratigraphy and Global Changes of Sea Level, Part 5: Chronostratigraphic Significance of Seismic Reflections1. In Seismic Stratigraphy — Applications to Hydrocarbon Exploration (Vol. 26, pp. 0): American Association of Petroleum Geologists.
Yang, K.-M., Huang, S.-T., Wu, J.-C., Ting, H.-H., & Mei, W.-W. (2006). Review and new insights on foreland tectonics in western Taiwan. International Geology Review, 48(10), 910-941.
Yen, J.-Y., and Lundberg, N. (2006). Sediment compositions in offshore southern Taiwan and their relations to the source rocks in modern arc-continent collision zone. Marine Geology, 225(1), 247-263. doi:https://doi.org/10.1016/j.margeo.2005.09.003
Yu, H.-S., and Chiang, C.-S. (1997a). Kaoping shelf: morphology and tectonic significance. Journal of Asian Earth Sciences, 15(1), 9-18. doi:https://doi.org/10.1016/S0743-9547(96)00076-1
Yu, H.-S., and Chiang, C.-S. (1997b). Seismic and morphological characteristics of the Kaohsiung submarine canyon, southwestern Taiwan. Oceanographic Literature Review, 6(44), 582.
Yu, H.-S., and Hong, E. (2006). Shifting submarine canyons and development of a foreland basin in SW Taiwan: controls of foreland sedimentation and longitudinal sediment transport. Journal of Asian Earth Sciences, 27(6), 922-932. doi:https://doi.org/10.1016/j.jseaes.2005.09.007
Yu, H.-S., and Huang, Z.-Y. (2009). Morphotectonics and sedimentation in convergent margin basins: An example from juxtaposed marginal sea basin and foreland basin, Northern South China Sea. Tectonophysics, 466(3-4), 241-254. doi:10.1016/j.tecto.2007.11.007
Yu, H.-S., and Wen, Y. (1991). Morphology and echo characters of Fangliao submarine canyon off southwest Taiwan. Acta Oceanographica Taiwanica(26), 1-12.
Zucker, E., Gvirtzman, Z., Steinberg, J., and Enzel, Y. (2017). Diversion and morphology of submarine channels in response to regional slopes and localized salt tectonics, Levant Basin. Marine and Petroleum Geology, 81, 98-111. doi:https://doi.org/10.1016/j.marpetgeo.2017.01.002
沈剛年,2017,台灣西南海域之增積岩體於更新世以來受到構造控制之深海水道/深海扇系統演育. 國立中央大學, Retrieved from http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=103622020
林亮甫,2017,台灣西南海域前緣海脊三維震測資料之分析技術應用與影像展示。2017年中華民國地球物理學會與中華民國地質學會 109 年年會暨學術研討會。
林亮甫,2020,台灣西南海域澎湖與高屏海底扇系統之沉積震測特徵。國立臺灣大學理學院海洋研究所博士論文。
林哲銓,2005,台灣西南部海域含天然氣水合物地層構造架構與沉積特徵。國立中央大學地球物理研究所碩士論文。
林哲銓,2012,台灣西南海域天然氣水合物地質控制因素與資源量評估。國立中央大學地球物理研究所博士論文。
彭于珊,2012,台灣西南海域永安海脊熱流變化對天然氣水合物穩定帶的影響。國立臺灣大學理學院海洋研究所碩士論文。
鐘三雄、林殿順、林哲銓、劉家瑄、陳松春、王永絢、魏正岳、陳柏淳,2016,臺灣西南-南部海域天然氣水合物資源潛能調查研究。經濟部中央地質調查所特刊,第30號,第1-42頁。

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw