進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2908201912105200
論文名稱(中文) 比較不同自鎖式陶瓷矯正器之黏著力與摩擦行為表現
論文名稱(英文) Comparison of bonding and friction behavior among self-ligating ceramic brackets: an in vitro study
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 107
學期 2
出版年 108
研究生(中文) 吳佳霖
研究生(英文) Chia-Lin Wu
學號 T46054060
學位類別 碩士
語文別 英文
論文頁數 91頁
口試委員 指導教授-劉佳觀
共同指導教授-李澤民
口試委員-張禎容
口試委員-姚宗珍
中文關鍵字 陶瓷自鎖矯正器  剪切黏著力  牛牙  黏膠殘留指數  鎳鈦線  溝槽  角度  摩擦力  滑行抗力 
英文關鍵字 ceramic self-ligating bracket  shear bond strength  bovine teeth  adhesive remnant index (ARI)  NiTi wire  slot  angulation  friction force  resistance to sliding 
學科別分類
中文摘要 矯正中的牙齒移動有兩個要素:矯正器於牙齒上有良好的黏著力,以及牙齒隨著弓線順暢移動。為了有良好的黏著力,廠商逐漸開發出不同的底座設計以提供足夠的機械性滯留。另外,在治療中的牙齒移動,矯正器與弓線會有摩擦力的產生。之前已有許多有關自鎖金屬矯正器的摩擦力研究被發表,近年來自鎖陶瓷矯正器蓬勃發展,而陶瓷矯正器的表面特性又與金屬矯正器不同。而且,現今較少比較性研究針對自鎖陶瓷矯正器。故本實驗的目的是想要評估:底座設計對不同品牌矯正器的剪力方向黏著強度之影響,及比較其在不同條件下的摩擦力。本實驗分為兩大部分,黏著實驗及摩擦力實驗。五組矯正器(含3種自鎖陶瓷矯正器:ClippyC, GeniusCrystal及DamonClear2;傳統陶瓷矯正器:ClarityAdvanced;自鎖金屬矯正器:Damon3MX)在黏著實驗中,以牛牙取代人牙;並測試五組底座不同的矯正器的黏著力,每組包含12個矯正器。以電子顯微鏡觀察底座設計,另在矯正器脫落後,分析其切面並比較其黏膠殘留指數。在摩擦力實驗中,研究一些比較因子的影響,包含兩種弓線粗細 (.014銅鎳鈦線, .016X .022 鎳鈦線)及三種角度(0°, 5°, 10°)。每種矯正器/弓線/角度組合皆測試五次,共有30組設定,故總共運行150次。而實驗結果指出,DamonClear2矯正器的剪切黏著力最大,且與其他4組在統計上有顯著差異;至於黏膠殘留指數,則是ClarityAdvanced矯正器最大,而DamonClear2矯正器最小。在摩擦力研究,角度為0°到5°時,摩擦力無顯著差異;但角度為5°到10°時,大部分的組合摩擦力皆有顯著差異。ClarityAdvanced矯正器比自鎖矯正器有更大的摩擦力,但在方線轉10°時,各組矯正器摩擦力則無顯著差異。本研究結論為DamonClear2矯正器的剪切黏著力最大,傳統矯正器比自鎖矯正器有更大的摩擦力,而在方線轉10°時除外。
英文摘要 Orthodontic tooth movement depends on adequate bond strength between brackets and the tooth surface and smooth tooth sliding along the archwire. For optimal mechanical retention, various base designs have been produced by manufacturers, for which good bond strength has been claimed. Without mechanical retention, a frictional force is generated between brackets and the archwire during sliding. The friction forces of metal self-ligating brackets have been previously studied. Recently, ceramic self-ligating brackets that have surface characteristics different from those of metal brackets have been proposed. Furthermore, studies have compared ceramic self-ligating brackets. The aims of this study were to evaluate the effect of the base design of various self-ligating ceramic brackets on shear bond strength and to compare friction forces among brackets under various circumstances. The present study is divided into two parts: a shear bond strength test and a friction behavior test. In the shear bond strength test, bovine teeth were used as a substitute for human teeth. Five groups of brackets (three ceramic self-ligating brackets: ClippyC, GeniusCrystal, and DamonClear2; one conventional self-ligating bracket: ClarityAdvanced; one metal self-ligating bracket: Damon3MX) were used and debonded with 12 brackets in each group. The base designs were observed using scanning electron microscopy. The interfaces after debonding were analyzed and the adhesive remnant index (ARI) scores were compared. In the friction test, five kinds of bracket were tested under various circumstances. Several parameters were investigated, including two wire sizes (0.014" Cu-NiTi and 0.016" × 0.022" NiTi) and three angulations (0°, 5°, and 10°). Each bracket/wire/angulation combination was tested five times in 30 settings. A total of 150 runs were performed. The results show that DamonClear2 had the highest bond strength among the 5 brackets, with significant differences found. ClarityAdvanced and DamonClear2 had the highest and lowest ARI scores, respectively. In the friction behavior test, there was no significant difference in friction force between angulations of 0° and 5°, but there was a significant difference between angulations of 5° and 10° for the same brackets. ClarityAdvanced had the largest frictional force, but there was no significant difference in frictional force for 0.016" × 0.022" NiTi with an angulation of 10°. It is found that DamonClear2 had the highest bond strength and that the conventional bracket generally had a larger frictional force than that of the self-ligating bracket, except for 0.016" × 0.022" NiTi with an angulation of 10°.
論文目次 中文摘要 i
Abstract iii
誌謝 v
Contents vi
List of Tables ix
List of Figures x
Chapter 1 Introduction 1
1.1 General background 1
1.2 Literature review 2
1.2.1 Shear bond strength test 2
1.2.2 In vitro versus in vivo bonding studies 3
1.2.3 Optimum bond strength in orthodontics 3
1.2.4 Adhesive remnant index 4
1.2.5 Friction in orthodontic sliding 4
1.2.6 Critical contact angle 5
1.2.7 Review of self-ligating brackets 8
1.2.8 Review of ceramic brackets 10
1.3 Motivation 12
1.4 Objective 12
Chapter 2 Materials and Methods 13
2.1 Experimental flow chart 13
2.2 Materials 14
2.2.1 Brackets 14
2.2.2 Adhesives 16
2.2.3 Archwires 17
2.3 Methods 18
2.3.1 Shear bond strength test 18
2.3.2 Friction behavior test 21
2.3.3 SEM observation of brackets, slots, and wires 25
2.3.4 EDS analysis of bracket composition 25
2.3.5 Statistical analysis 26
Chapter 3 Results 27
3.1 Shear bond test 27
3.1.1 Bond strength test 27
3.1.2 Adhesive remnant index 29
3.1.3 Statistical analysis 32
3.2 Friction behavior test 33
3.2.1 Friction behavior 33
.3.2.1.1 Archwire: 0.014" 27 °C Cu-NiTi 33
.3.2.1.2 Archwire: 0.016" × 0.022" NiTi 36
3.2.2 Statistical analysis 40
.3.2.2.1 Bracket type as parameter 40
.3.2.2.2 Angulation as parameter 41
3.2.3 SEM observation 44
.3.2.3.1 Bracket design 44
.3.2.3.2 Tooth surfaces after debonding test 48
.3.2.3.3 Bracket slot before friction test 53
.3.2.3.4 Bracket slot after friction test 58
.3.2.3.5 Wires after friction test 63
3.3 EDS analysis of bracket composition 69
Chapter 4 Discussion 72
4.1 Effect of parameters on bond strength 72
4.1.1 Substrate 73
4.1.2 Base design 75
4.1.3 Bracket material 76
4.1.4 Enamel damage after bracket debonding 78
4.2 Effect of parameters on friction behavior 79
4.2.1 Materials 80
4.2.2 Critical contact angle 82
4.2.3 SEM observation 84
4.3 Limitations of study 85
Chapter 5 Conclusions 86
References 87
參考文獻 Ansari, M. Y., Agarwal, D. K., Gupta, A., Bhattacharya, P., Ansar, J. and Bhandari, R. (2016). "Shear bond strength of ceramic brackets with different base designs: Comparative in-vitro study." J Clin Diagn Res 10(11): Zc64-68.
Artun, J. and Bergland, S. (1984). "Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment." Am J Orthod 85(4): 333-340.
Bishara, S. E. and Fehr, D. E. (1997). "Ceramic brackets: Something old, something new, a review." Semin Orthod 3(3): 178-188.
Bishara, S. E., Fehr, D. E. and Jakobsen, J. R. (1993). "A comparative study of the debonding strengths of different ceramic brackets, enamel conditioners, and adhesives." Am J Orthod Dentofac Orthop 104(2): 170-179.
Bowen, R. L. and Rodriguez, M. S. (1962). "Tensile strength and modulus of elasticity of tooth structure and several restorative materials." J Am Dent Assoc 64: 378-387.
Burrow, S. J. (2009). "Friction and resistance to sliding in orthodontics: A critical review." Am J Orthod Dentofac Orthop 135(4): 442-447.
Chang, C. J., Lee, T. M. and Liu, J. K. (2013). "Effect of bracket bevel design and oral environmental factors on frictional resistance." Angle Orthod 83(6): 956-965.
da Rocha, J. M., Gravina, M. A., da Silva Campos, M. J., Quintao, C. C., Elias, C. N. and Vitral, R. W. (2014). "Shear bond resistance and enamel surface comparison after the bonding and debonding of ceramic and metallic brackets." Dental Press J Orthod 19(1): 77-85.
David, V. A., Staley, R. N., Bigelow, H. F. and Jakobsen, J. R. (2002). "Remnant amount and cleanup for 3 adhesives after debracketing." Am J Orthod Dentofac Orthop 121(3): 291-296.
Ehsani, S., Mandich, M.A., El-Bialy, T. H. and Flores-Mir, C. (2009). "Frictional resistance in self-ligating orthodontic brackets and conventionally ligated brackets." Angle Orthod 79(3): 592-601.
Gittner, R., Müller-Hartwich, R. and Jost-Brinkmann P. G. (2010). "Influence of various storage media on shear bond strength and enamel fracture when debonding ceramic brackets: An in-vitro study." Semin Orthod 16(1): 49-54.
Graber, L. W., Vanarsdall, R. L., Vig, K. W. and Huang, G. J. (2016). Orthodontics: current principles and techniques, Elsevier Health Sciences.
Gupta, A., Kallury, A. and Sahu, K. (2017). "Influence of various factors affecting shear bond strength: A review." J Applied Dent Med Sci 3: 1.
Hajrassie, M. K. and Khier S. E. (2007). "In-vivo and in-vitro comparison of bond strengths of orthodontic brackets bonded to enamel and debonded at various times." Am J Orthod Dentofac Orthop 131(3): 384-390.
Joseph, V. P. and Rossouw E. (1990). "The shear bond strengths of stainless steel and ceramic brackets used with chemically and light-activated composite resins." Am J Orthod Dentofac Orthop 97(2): 121-125.
Karamouzos, A., Athanasiou, A. E. and Papadopoulos, M. A. (1997). "Clinical characteristics and properties of ceramic brackets: A comprehensive review." Am J Orthod Dentofac Orthop 112(1): 34-40.
Kusy, R. P. and Whitley, J. Q. (1997). "Friction between different wire-bracket configurations and materials." Semin Orthod 3(3): 166-177.
Kusy, R. P. and Whitley, J. Q. (1999). "Influence of archwire and bracket dimensions on sliding mechanics: derivations and determinations of the critical contact angles for binding." Eur J Orthod 21(2): 199-208.
Lee, S. M. and Hwang, C. J. (2015). "A comparative study of frictional force in self-ligating brackets according to the bracket-archwire angulation, bracket material, and wire type." Korean J Orthod 45(1): 13-19.
Liu, J. K., Chung, C. H., Chang, C. Y. and Shieh, D. B. (2005). "Bond strength and debonding characteristics of a new ceramic bracket." Am J Orthod Dentofac Orthop 128(6): 761-765; quiz 802.
Liu, X., Ding, P. and Lin, J. (2013). "Effects of bracket design on critical contact angle." Angle Orthod 83(5): 877-884.
Matsui, S., Umezaki, E., Komazawa, D., Otsuka, Y. and Suda, N. (2015). "Evaluation of mechanical properties of esthetic brackets." J Dent Biomech 6.
Moriwaki, Y., Kani. T., Kozatani, T, Tsutsumi, S, Shimode, M, Yamaga, R. (1968). " The crystallinity change of bovine enamel during maturation." Jpn J Dent Mat 9:78-85.
Nishio, C., da Motta, A. F. J., Elias, C. N. and Mucha, J. N. (2004). "In vitro evaluation of frictional forces between archwires and ceramic brackets." Am J Orthod Dentofac Orthop 125(1): 56-64.
Nishio, C., Mendes Ade, M., Almeida, M. A., Tanaka, E., Tanne, K. and Elias, C. N. (2009). "Evaluation of esthetic brackets' resistance to torsional forces from the archwire." Am J Orthod Dentofac Orthop 135(1): 42-48.
Oesterle, L. J., Shellhart, W. C. and Belanger, G. K. (1998). "The use of bovine enamel in bonding studies." Am J Orthod Dentofac Orthopedics 114(5): 514-519.
Pham, D., Bollu, P., Chaudhry, K. and Subramani, K. (2017). "Comparative evaluation of orthodontic bracket base shapes on shear bond strength and adhesive remnant index: An in vitro study." J Clin Exp Dent 9(7): e848-e854.
Pickett, K. L., Sadowsky, P. L., Jacobson, A. and Lacefield, W. (2001). "Orthodontic in vivo bond strength: comparison with in vitro results." Angle Orthod 71(2): 141-148.
Pizzoni, L., Ravnholt, G. and Melsen, B. (1998). "Frictional forces related to self-ligating brackets." Eur J Orthod 20(3): 283-291.
Pont, H. B., Ozcan, M., Bagis, B. and Ren, Y. (2010). "Loss of surface enamel after bracket debonding: an in-vivo and ex-vivo evaluation." Am J Orthod Dentofacial Orthop 138(4): 387.e381-387.e389.
Pratten, D. H., Popli, K., Germane, N. and Gunsolley, J. C. (1990). "Frictional resistance of ceramic and stainless steel orthodontic brackets." Am J Orthod Dentofac Orthop 98(5): 398-403.
Retief, D. H. (1974). "Failure at the dental adhesive—etched enamel interface." J Oral Rehab 1(3): 265-284.
Reynolds, I. R. (1975). "A Review of Direct Orthodontic Bonding." Br J Orthod 2(3): 171-178.
Rodriguez-Chavez, J. A., Arenas-Alatorre, J. and Belio-Reyes, I. A. (2017). "Comparative study of dental enamel loss after debonding braces by analytical scanning electron microscopy (SEM)." Microsc Res Tech 80(7): 680-686.
Rossouw, P. E. (2010). "A Historical Overview of the Development of the Acid-Etch Bonding System in Orthodontics." Semin Orthod 16(1): 2-23.
Schumacher, H. A., Bourauel, C. and Drescher, D. (1990). "The effect of the ligature on the friction between bracket and arch." Fortschr Kieferorthop 51(2): 106-116.
Sfondrini, M. F., Gatti, S. and Scribante, A. (2011). "Shear bond strength of self-ligating brackets." Eur J Orthod 33(1): 71-74.
Shivapuja, P. K. and Berger, J. (1994). "A comparative study of conventional ligation and self-ligation bracket systems." Am J Orthod Dentofac Orthop 106(5): 472-480.
Stolzenberg, J. (1935). "The Russell attachment and its improved advantages." Am J Orthod Dentofac Orthop 21(9): 837-840.
Thomas, S., Sherriff, M. and Birnie, D. (1998). "A comparative in vitro study of the frictional characteristics of two types of self-ligating brackets and two types of pre-adjusted edgewise brackets tied with elastomeric ligatures." Eu J Orthod 20(5): 589-596.
Wang, W. N., Li, C. H., Chou, T. H., Wang, D. D., Lin, L. H. and Lin, C. T. (2004). "Bond strength of various bracket base designs." Am J Orthod Dentofacial Orthop 125(1): 65-70.
Winchester, L. J. (1991). "Bond strengths of five different ceramic brackets: an in vitro study." Eur J Orthod 13(4): 293-305.
Yassen, G. H., Platt, J. A. and Hara, A. T. (2011). "Bovine teeth as substitute for human teeth in dental research: a review of literature." J Oral Sci 53(3): 273-282.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw