系統識別號 U0026-2908201819454000
論文名稱(中文) 結合GPS及BDS對於定位效能之提升:應用於大地監測
論文名稱(英文) Combining GPS and BDS to improve positioning performance: application to geodetic monitoring
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 106
學期 2
出版年 107
研究生(中文) 吳岱育
研究生(英文) Dai-Yu Wu
學號 P66044081
學位類別 碩士
語文別 中文
論文頁數 133頁
口試委員 指導教授-楊名
中文關鍵字 GPS  BDS  靜態定位  逐一時刻定位  精度分析 
英文關鍵字 GPS  BDS  Static positioning  Epoch-by-epoch positioning  Accuracy analysis 
中文摘要 GPS (Global Positioning System) 精密定位可提供使用者靜態定位以及逐一時刻定位高精度的成定位成果,並廣泛的運用在大地監測之上,如:地殼變形監測、控制測量、海嘯早期預警以及估計同震位移等。而若是可改善GPS的定位效能,勢必對大地監測能產生助益。近年來由於中國的北斗衛星導航系統(BeiDou Navigation Satellite System, BDS)正式提供亞太地區服務,並且由於其衛星的軌道特性,使得BDS在台灣地區具有與GPS相當的可視衛星,此外再加上都是以CDMA的方式傳播訊號,顯示兩者之間有較高的相容性。因此在本研究中希望藉由結合GPS及BDS,增強衛星幾何,達到提升定位效能的目標。在實驗中,蒐集了5條基線(50~265km),並分析加入BDS之後對於靜態定位連續站模式、靜態定位移動站模式以及逐一時刻定位成果的影響。其成果顯示:(1)在靜態定位連續站模式中,GPS與GPS+BDS會有精度相似的每日解,在平面精度上幾乎一致,而高程精度則是GPS+BDS會略優於GPS。(2)在靜態定位移動站模式中,當觀測時間在2小時內GPS+BDS能夠明顯的提升定位精度,而在觀測時間大於4小時之後可以預期GPS+BDS與GPS會有相似的定位精度。在觀測時間小於2小時,GPS+BDS可以縮短定位精度達到預設精度門檻值所需的時間。 (3)而在逐一時刻定位的部分,GPS+BDS在平面精度及高程精度上分別約有19%及23%的提升。
英文摘要 GPS (Global Positioning System) precise positioning can provide accurate static and epoch-by-epoch positioning result, and is widely used in geodetic monitoring. The BDS (BeiDou Navigation Satellite System) has been fully-operational in Asia-Pacific region. Currently in Taiwan, BDS can provide as many visible satellites as GPS can provide. Moreover, both of BDS and GPS transmit signal are based on CDMA, which means these two systems are highly compatible. Therefore, we expect to achieve better positioning performance by combining GPS and BDS. In this study, we develop a generalized computation method and use the method to perform GPS-only and GPS+BDS relative positioning and to evaluate the impact of GPS+BDS in continuously operating reference station (CORS) mode, in campaign mode, and in epoch-by-epoch positioning. For data analyses, five experimental baselines which ranging from 50km to 265km were collected. The results indicate that (1) in CORS mode, GPS+BDS has similar horizontal daily solutions as GPS, and is slightly better than GPS in vertical daily solutions; (2) in campaign mode, for date length ≤ 2hr, obvious positioning accuracy improvement could be obtained by GPS+BDS. For date length ≥ 4hr, GPS+BDS would have similar positioning accuracy as GPS. For date length ≤ 2hr, the required occupation time for achieving a predefined accuracy can be significantly reduced by applied GPS+BDS; (3) for epoch-by-epoch positioning, the positioning accuracy could be improved by 19% in horizontal direction and by 23% in vertical direction.
論文目次 摘要 I
誌謝 VII
表目錄 X
圖目錄 XII
第一章 緒論 1
§1-1 研究背景 1
§1-1-1 GPS現代化 2
§1-1-2 GLONASS現代化 4
§1-1-3 北斗衛星導航系統 6
§1-1-4 Galileo系統 8
§1-2 文獻回顧 9
§1-3 研究動機與目的 11
第二章 衛星定位基本原理 14
§2-1 衛星定位觀測量 14
§2-1-1 虛擬距離觀測量 14
§2-1-2 載波相位觀測量 16
§2-2 衛星定位誤差來源 17
§2-2-1 軌道誤差 17
§2-2-2 衛星天線相位中心偏移 19
§2-2-3 時錶誤差 21
§2-2-4 電離層延遲 21
§2-2-5 對流層延遲 25
§2-2-6 地球固體潮 27
§2-2-7 地球旋轉 28
§2-2-8 接收儀天線相位中心偏移及變動 28
§2-2-9 多路徑效應 30
§2-2-10 衛星系統間偏差 31
§2-2-11 衛星種類間偏差 32
§2-3 相對定位原理 32
§2-3-1 二次差分觀測量 33
§2-3-2 最小二乘平差法 34
§2-3-3 誤差傳播 35
§2-3-4 整數週波未定值搜尋方法:LAMBDA 36
§2-3-5 整數週波未定值成果驗證:比率測試 39
第三章 GNSS相對定位基線計算方法 40
§3-1 雙系統觀測量結合 40
§3-1-1 參考時間系統 40
§3-1-2 參考坐標系統 42
§3-2 觀測量線性組合 42
§3-2-1 無電離層組合 44
§3-2-2 Hatch-Melbourne-Wübbena(HMW)組合 45
§3-3 處理對流層延遲之方法 46
§3-4 卡曼濾波器 47
§3-5 實驗流程 54
第四章 實驗與成果分析 56
§4-1 實驗資料 56
§4-2 參考值之解算軟體簡介 59
§4-2-1 GIPSY 59
§4-2-2 GAMIT 60
§4-3 靜態定位-連續站模式成果分析 60
§4-4 靜態定位-移動站模式成果分析 61
§4-4-1 收斂時間 63
§4-4-2 相對精度門檻值之收斂時間 65
§4-4-3 絕對精度門檻值之收斂時間 75
§4-4-4 定位精度與觀測時間長度之關係 82
§4-5 逐一時刻定位成果分析 86
§4-5-1 NCKU與GAMIT之比較 86
§4-5-2 GPS與結合GPS及BDS之比較 90
第五章 結論與建議 94
參考文獻 96
附錄 106
參考文獻 Altamimi, Z., Rebischung, P., Métivier, L., Collilieux, X. (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth 121 (8): 6109-6131.
Anquela, A.B., Martín, A., Berné, J.L., Padín, J. (2013) GPS and GLONASS Static and Kinematic PPP Results. Journal of Surveying Engineering 139 (1): 47-58.
Ashby, N. (2004) The Sagnac Effect in the Global Positioning System. In: Rizzi, G., Ruggiero, M.L. (eds.) Relativity in Rotating Frames: Relativistic Physics in Rotating Reference Frames. Springer, Dordrecht, pp 11-28.
Baldi, P., Casula, G., Cenni, N., Loddo, F., Pesci, A. (2009) GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth and Planetary Science Letters 288 (1): 204-212.
Bevis, M., Businger, S., Chiswell, S., Herring, T.A., Anthes, R.A., Rocken, C., Ware, R.H. (1994) GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. Journal of Applied Meteorology 33 (3): 379-386.
Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., Ware, R.H. (1992) GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres 97 (D14): 15787-15801.
Bock, Y., Melgar, D., Crowell, B.W. (2011) Real-Time Strong-Motion Broadband Displacements from Collocated GPS and Accelerometers. Bulletin of the Seismological Society of America 101 (6): 2904-2925.
Bouin, M.-N., Ballu, V., Calmant, S., Boré, J.-M., Folcher, E., Ammann, J. (2009) A kinematic GPS methodology for sea surface mapping, Vanuatu. Journal of Geodesy 83 (12): 1203-1217.
Bruyninx, C. (2007) Comparing GPS-only with GPS + GLONASS positioning in a regional permanent GNSS network. GPS Solutions 11 (2): 97-106.
Capilla, R.M., Berné, J.L., Martín, A., Rodrigo, R. (2016) Simulation case study of deformations and landslides using real-time GNSS precise point positioning technique. Geomatics, Natural Hazards and Risk 7 (6): 1856-1873.
Chen, K., Zamora, N., Babeyko, A.Y., Li, X., Ge, M. (2015) Precise Positioning of BDS, BDS/GPS: Implications for Tsunami Early Warning in South China Sea. Remote Sensing 7 (12): 15955-15968.
Cheng, P., Wen, H., Cheng, Y., Wang, H. (2009) Parameters of the CGCS2000 Ellipsoid and Comparisons with GRS80 and WGS84. Acta Geodaetica et Cartographica Sinica 38(3): 189-194.
Chu, F.-Y. and Yang, M. (2014) GPS/Galileo long baseline computation: method and performance analyses. GPS Solutions 18 (2): 263-272.
Cocard, M., Bourgon, S., Kamali, O., Collins, P. (2008) A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. Journal of Geodesy 82 (9): 555-564.
CSNO (2013) BeiDou Navigation Satellite System Open Service Performance Standard (Version 1.0). China Satellite Navigation Office, Beijing, China.
CSNO (2016) BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal (Version 2.1). China Satellite Navigation Office, Beijing, China.
Dawidowicz, K. and Krzan, G. (2014) Accuracy of single receiver static GNSS measurements under conditions of limited satellite availability. Survey Review 46 (337): 278-287.
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Hove, T.V., Ware, R., McClusky, S., Herring, T.A., King, R.W. (1996) GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water. Journal of Applied Meteorology 35 (6): 830-838.
EU (2016) European GNSS (Galileo) Open Service Signal-In-Space Interface Control Document (OS SIS ICD), Issue 1.3, European Union.
European Commission, EC. http://ec.europa.eu/growth/sectors/space/galileo/.
European Space Agency, ESA. http://www.esa.int/ESA.
Feess, W.A. and Stephens, S.G. (1987) Evaluation of GPS Ionospheric Time-Delay Model. IEEE Transactions on Aerospace and Electronic Systems AES-23 (3): 332-338.
Feng, L., Hill, E.M., Banerjee, P., Hermawan, I., Tsang, L.L.H., Natawidjaja, D.H., Suwargadi, B.W., Sieh, K. (2015) A unified GPS-based earthquake catalog for the Sumatran plate boundary between 2002 and 2013. Journal of Geophysical Research: Solid Earth 120 (5): 3566-3598.
Feng, Y. (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. Journal of Geodesy 82 (12): 847-862.
Feng, Y. and Li B. (2009) Three Carrier Ambiguity Resolutions: Generalised Problems, Models and Solutions. Journal of Global Positioning Systems 8 (2): 115-123.
Feng, Y. and Rizos, C. (2005) Three Carrier Approaches for Future Global, Regional and Local GNSS Positioning Services: Concepts and Performance Perspectives. In: Proceedings of ION GNSS 2005, Long Beach, CA, September 13–16, pp 2277–2787.
Feng, Y. and Rizos, C. (2009) Network-based geometry-free three carrier ambiguity resolution and phase bias calibration. GPS Solutions 13 (1): 43-56.
GAMIT-GLOBK Homepage, http://www-gpsg.mit.edu/~simon/gtgk/.
Gao, W., Gao, C., Pan, S., Wang, D., Deng, J. (2015) Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations. Sensors 15 (11): 27525-27542.
Gelb, A, (editor), 1979. Applied Optimal Estimation, M.I.T. Press, Cambridge, Massachusetts.
Genshtab (2014) Parametry Zemli 1990(PZ-90.11) Reference Document. Military Topography Department of the General Staff of the Armed Forces of the Russian Federation, Moscow, Russia.
Gioia, C., Gaglione, S., Borio, D. (2015) Inter-system Bias: Stability and Impact on Multi-constellation Positioning. In: IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, June 4-5, pp 103-108.
Goad, C.C. and Yang, M. (1997) A New Approach to Precision Airborne GPS Positioning for Photogrammetry. Photogrammetric engineering & remote sensing 63 (9): 1067-1077.
Goad, C.C. and Goodman, L. (1974). A modified Hopfield tropospheric refraction correction model. In: American Geophysical Union annual fall meeting, San Francisco, California, December 12-17.
GPS.GOV, http://www.gps.gov/.
Hatch, R. (1982) The synergism of GPS code and carrier measurements. In: Proceedings of the third international symposium on satellite doppler positioning at physical sciences laboratory of New Mexico State University, February 8–12, vol 2, pp 1213–1231.
He, H., Li, J., Yang, Y., Xu, J., Guo, H., Wang, A. (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solutions 18 (3): 393-403.
Herring, T.A., King, R.W., Floyd, M.A., McClusky, S.C. (2015) Introduction to Gamit/Globk. Massachusetts Institute of Technology, Cambridge, Massachusetts.
Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. (2008) GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer, Vienna.
IGS MGEX, http://mgex.igs.org/index.php.
Inazu, D., Waseda, T., Hibiya, T., Ohta, Y. (2016) Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis. Geoscience Letters 3 (1): 25.
Information and Analysis Center for Positioning, Navigation and Timing, IAC. https://www.glonass-iac.ru/en/.
International GNSS service, IGS. http://www.igs.org/.
Issler, J.L., Lestarquit, L., Grondin, M. (2001) Missions and radionavigation payloads. In: Course books for the summer school in Alpbach, Austria, July 17–26.
Julien, O., Alves, P., Cannon, M. E., Zhang, W. (2003) A Tightly Coupled GPS/GALILEO Combination for Improved Ambiguity Resolution. In: Proceedings of the European Navigation Conference GNSS (ENC-GNSS'03, Graz, Austria, April 22-25. 14 pages.
Kalman, R.E. (1960) A new approach to linear filtering and prediction problems. Journal of basic engineering 82 (Series D): 35-45.
Klobuchar, J.A. (1987) Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems AES-23 (3): 325-331.
Kouba, J. and Héroux, P. (2001) Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions 5 (2): 12-28.
Larson, K.M. (2009) GPS seismology. Journal of Geodesy 83 (3): 227-233.
Lavrov, D., Even-Tzur, G., Reinking, J. (2017) Expansion and Improvement of the Israeli Geoid Model by Shipborne GNSS Measurements. Journal of Surveying Engineering 143 (2): 04016022.
Leick, A. (1995) GPS satellite surveying, 2nd edition. John Willey & Sons, New York.
Leick, A., Rapoport, L., Tatarnikov, D. (2015) GPS satellite surveying, 4th edition. John Willey & Sons, Hoboken, New Jersey.
Li, J., Yang, Y., He, H., Guo, H. (2017) An analytical study on the carrier-phase linear combinations for triple-frequency GNSS. Journal of Geodesy 91 (2): 151-166.
Li, P. and Zhang, X. (2014) Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solutions 18 (3): 461-471.
Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., Schuh, H. (2015a) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy 89 (6): 607-635.
Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., Schuh, H. (2015b) Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Scientific reports 5: 8328.
Li, H., Dang, Y., Bei, J., Yang, F. (2013) Resarch on spatio tempora unification of BDS/GPS/GLONASS multi-mode fusion navigation and positioning. Journal of geodesy and geodynamics 33 (4): 73-78.
Ma, L.H., Han, Y.B., Yin, Z.Q. (2009) Periodicities in Global Mean TEC from GNSS Observations. Earth, Moon, and Planets 105 (1): 3-10.
McCarthy, D.D. (1996) IERS Technical Note No. 21. Central Bureau of IERS, Paris.
Melbourne, W. (1985) The case for ranging in GPS-based geodetic systems. In: First international symposium on precise positioning with the global positioning system, Rockville, pp 373–386.
Misera, P. and Enge, P. (2006) Global positioning system: signals, measurements and performance, 2nd edition. Ganga-Jamuna Press, Lincoln, Massachusetts.
Nadarajah, N., Teunissen, P.J.G., Sleewaegen, J.-M., Montenbruck, O. (2015) The mixed-receiver BeiDou inter-satellite-type bias and its impact on RTK positioning. GPS Solutions 19 (3): 357-368.
Odijk, D. and Teunissen, P.J.G. (2013) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solutions 17 (4): 521-533.
Odolinski, R., Teunissen, P.J.G., Odijk, D. (2015) Combined GPS + BDS for short to long baseline RTK positioning. Measurement Science and Technology 26 (4): 045801.
Ohta, Y., Kobayashi, T., Tsushima, H., Miura, S., Hino, R., Takasu, T., Fujimoto, H., Iinuma, T., Tachibana, K., Demachi, T., Sato, T., Ohzono, M., Umino, N. (2012) Quasi real‐time fault model estimation for near‐field tsunami forecasting based on RTK‐GPS analysis: Application to the 2011 Tohoku‐Oki earthquake (Mw 9.0). Journal of Geophysical Research: Solid Earth 117 (B2). doi:10.1029/2011JB008750
Paziewski, J. and Wielgosz, P. (2015) Accounting for Galileo–GPS inter-system biases in precise satellite positioning. Journal of Geodesy 89 (1): 81-93.
Pesci, A., Teza, G., Casula, G. (2009) Improving strain rate estimation from velocity data of non-permanent GPS stations: the Central Apennine study case (Italy). GPS Solutions 13 (4): 249-261.
Rothacher, M. (2002) Estimation of Station Heights with GPS. In: Drewes, H., Dodson, A.H., Fortes, L.P.S., Sánchez, L., Sandoval, P. (eds.) Vertical Reference Systems: IAG Symposium Cartagena, Colombia, February 20–23, 2001. Springer, Berlin, Heidelberg, pp 81-90.
Saastamoinen, J. (1973): Contribution to the theory of atmospheric refraction. Bulletin Géodésique, 107(1): 13–34.
Schüler, T. (2001) On Ground-Based GPS Tropospheric Delay Estimation. Schriftenreihe, Vol.73. Studiengang Geodäsie und Geoinformation, Univeristät der Bundeswehr München, Germany.
Schüler, T. (2006) Impact of systematic errors on precise long-baseline kinematic GPS positioning. GPS Solutions 10 (2): 108-125.
SCIO (2016) China’s BeiDou Navigation Satellite System. The State Council Information Office of the People’s Republic of China, Beijing, China.
Seeber, G. (2003) Satellite geodesy, 2nd edition. Walter de Gruyter, Germany.
Shi, C., Zhao, Q., Hu, Z., Liu, J. (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solutions 17 (1): 103-119.
Shrestha, S.M. (2003). Investigations into the Estimation of Tropospheric Delay and Wet Refractivity Using GPS Measurements. University of Calgary, Canada.
Solar Influences Data Analysis Center (2007) http://sidc.oma.be/.
Takasu, T. (2013) RTKLIB ver. 2.4.2 Manual, http://www.rtklib.com/.
Tang, W., Deng, C., Shi, C., Liu, J. (2014) Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system. GPS Solutions 18 (3): 335-344.
Teunissen, P.J.G. (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy 70 (1): 65-82.
Teunissen, P.J.G. and Montenbruck, O. (eds.) (2017) Springer handbook of global navigation satellite systems. Springer, Cham, Switzerland.
Teunissen, P.J.G. and Odijk, D. (2003) Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution. Journal of Geodesy 76 (9): 523-535.
Teunissen, P.J.G. and Verhagen, S. (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Survey Review 41 (312): 138-151.
Tiryakioğlu, I. (2015) Geodetic aspects of the 19 May 2011 Simav earthquake in Turkey. Geomatics, Natural Hazards and Risk 6 (1): 76-89.
Verhagen, S. (2004) Integer ambiguity validation: an open problem? GPS Solutions 8 (1): 36-43.
Wang, J., Rizos, C., Stewart, M.P., Leick, A. (2001) GPS and GLONASS Integration: Modeling and Ambiguity Resolution Issues. GPS Solutions 5 (1): 55-64.
Wang, M., Chai, H., Liu, J., Zeng, A. (2016) BDS relative static positioning over long baseline improved by GEO multipath mitigation. Advances in Space Research 57 (3): 782-793.
Wang, L., Li, Z.S., Yuan, H., Zhou, K. (2015) Validation and analysis of the performance of dual-frequency single-epoch BDS/GPS/GLONASS relative positioning. Chinese Science Bulletin 60 (9): 857–868.
Wanninger, L. (2012) Carrier-phase inter-frequency biases of GLONASS receivers. Journal of Geodesy 86 (2): 139-148.
Wei, Z. (2008) China geodetic coordinate system 2000 and its comparison with WGS84. Journal of geodesy and geodynamics 28 (5): 1-5.
Wells, D., Beck, N., Delikaraoglou, D., Kleusberg, A., Krakiwsky, E.J., Lachapelle, G., Langley, R.B., Nakiboglu, M., Schwarz, K.-P., Tranquilla, J.M., Vanicek, P. (1986) Guide to GPS positioning. Canadian GPS Associates, Frederiction, Canada.
Wübbena, G. (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: First international symposium on precise positioning with the global positioning system, Rockville, pp 403–412.
Xu, G. and Xu, Y. (2016) GPS: Theory, Algorithms and Applications, 3rd edition. Springer, Berlin, Heidelberg.
Xu, Y., Ji, S., Chen, W., Weng, D. (2015) A new ionosphere-free ambiguity resolution method for long-range baseline with GNSS triple-frequency signals. Advances in Space Research 56 (8): 1600-1612.
Yu, J., Meng, X., Shao, X., Yan, B., Yang, L. (2014) Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing. Engineering Structures 81: 432-443.
Zhang, J. and Lachapelle, G. (2001) Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications. Journal of Geodesy 75 (5): 255-266.
Zhang, X.H. and He, X.Y. (2015) BDS triple-frequency carrier-phase linear combination models and their characteristics. Science China Earth Sciences 58 (6): 896-905.
Zhang, W., Cannon, M.E., Julien, O., Alves, P. (2003) Investigation of Combined GPS/GALILEO Cascading Ambiguity Resolution Schemes. In: Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, September 9-12, pp 2599-2610.
Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H. (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth 102 (B3): 5005-5017.
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-03起公開。

  • 如您有疑問,請聯絡圖書館