進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2908201813420700
論文名稱(中文) 脈衝電暈放電增強跳脫噴流火焰穩駐特性與回駐過程之研究
論文名稱(英文) The Stabilization Characteristics and Reattachment Process of Lifted Diffusion Jet Flames Enhanced by Repetitive D.C. Electric Pulse Corona Discharges
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 張子威
研究生(英文) Tzu-Wei Chang
電子信箱 a911049@ms66.hinet.net
學號 P48981170
學位類別 博士
語文別 英文
論文頁數 87頁
口試委員 指導教授-趙怡欽
口試委員-鄭藏勝
召集委員-袁曉峰
口試委員-吳志勇
口試委員-湯敬民
口試委員-陳冠邦
中文關鍵字 紊流噴流跳脫火焰  火焰回駐  重覆式D.C.電壓脈衝  電暈放電  放電極性  粒子影像測速 
英文關鍵字 Reattachment process  Stabilization  Pulsed DC electric discharge  Electric corona  Pulse repetition frequency  Turbulent lifted jet flame  Conditional PIV 
學科別分類
中文摘要 為了因應高效率低汙染燃燒器操作上的先天限制問題,例如貧油燃燒所產生的火焰不穩定現象,低成本的高電壓電子性放電技術已被廣泛地探討與實際地應用在輔助火焰燃燒與增強火焰穩駐特性。本論文主要是藉由施加重覆式DC高電壓脈衝於一尖端狀黃銅電極以產生電暈放電來探討不同的重覆放電頻率與放電極性對丙烷紊流噴流跳脫火焰的穩駐特性之影響。實驗結果顯示,當施加正極性的電壓脈衝與較高的重覆頻率時,跳脫火焰底端能穩駐於更高速的上游流場甚至能往上游傳遞進而回駐於噴嘴管口,此意謂著脈衝電暈放電能延伸火焰的穩駐極限並抑制火焰不穩定現象的發生。
因此在此論文中,跳脫火焰底端與脈衝電暈放電的交互作用過程為主要的研究目標,利用高速攝影機與二維粒子影像測速系統(Particle image velocimetry)同步對火焰底端的三歧火焰回駐傳遞過程做移動速度之量測與瞬時流場速度分佈之分析,經由比較不同放電頻率的火焰回駐影像,發現在回駐過程中都會經歷兩種不同的電子脈衝放電作用模式影響: 電場放電與電暈放電。此外分析火焰底端移動速度與瞬時流場速度分佈發現在高頻放電火焰能回駐的情況下,主導跳脫火焰底端回駐特性的三歧火焰傳遞速度會大於丙烷的當量層流火焰燃燒速度,此機制與火焰回駐過程所誘發的電暈放電作用模式有很大的相關性。
英文摘要 Among the recently prevailing flame stabilization enhancement by electric field and plasma, repetitive D.C. electric pulse discharge is applied to a turbulent lifted diffusion jet flame to improve the reattachment limit in this study. The present study demonstrates the feasibility of enhancement in lifted jet flame reattachment by applying a repetitive high-voltage pulsed DC discharge to a proposed electrode configuration. To characterize experimentally the stability and the reattachment behaviors and process of lifted flames under the electric pulse effect with a proposed electrode configuration is the main objective. The effects of pulse repetition frequency (PRF) and diverse voltage polarity on flame are investigated. The result shows the reattachment velocity is enhanced more than double for positive polarity case with PRF of 1500 Hz as compared to the without discharge case. According to the sequence high speed images, the time history of flame base trace and displacement speed are presented and compared for 200 Hz and 1500 Hz cases under applying positive DC pulses. Both processes could be divided into two different types of electrical discharge. The electrical corona plasma is observed during upstream propagation process for both cases, and it plays a key role in enhancing flame displacement speed. Furthermore, in order to reveal the gas velocity distribution for the complicated flame-flow interaction during rapid reattachment process, a conditional particle image velocimetry (cond-PIV) measurement is used to analyze the detailed flame-flow interaction of complete reattachment process. By simultaneously using shuttered PIV and high speed camera imaging to record the instantaneous planar gas velocity field measurement conditioned on high speed sequence images. The results show that the instantaneous axial velocity is low and suitable for flame upstream propagation and reattachment. Finally the conditionally instantaneous leading-edge propagation speed is enhanced and exceeds 3 times that of stoichiometric laminar flame speed for 1500 Hz case, which leads to flame reattachment.
論文目次 摘要 I
ABSTRACT III
CONTENTS V
LIST OF FIGURES VII
NOMENCLATURE XI
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Atmospheric pressure plasmas 4
1.3 Lifted diffusion jet flame 7
1.4 Thesis Outline 11
CHAPTER II ELECTRICALLY DISCHARGE-ASSISTED COMBUSTION 13
2.1 Stabilization enhancement by DC/AC electric fields 13
2.2 Plasma-assisted flame stabilization 16
2.3 Motivation and Objectives 19
CHAPTER III EXPERIMENTAL APPARATUS AND METHODS 23
3.1 Burner and pulsed electrical discharge system 23
3.2 High-speed video camera imaging measurement 27
3.3 Conditional 2D velocity measurement system 29
CHAPTER IV STABILIZATION ENHANCEMENT BY PULSE DC DISCHARGE 34
4.1 Modification of flame stabilization behavior 34
4.2 Pulsed-discharge effect on liftoff height and reattachment stability 37
CHAPTER V REATTACHMENT ENHANCEMENT BY POSITIVE DC PULSE DISCHARGE 40
5.1 Reattachment process with applying various repetition frequency 40
5.2 Conditional instantaneous velocity field during reattachment process 45
5.3 Enhancement of leading-edge flame propagation velocity 50
5.4 Summary 54
CHAPTER VI CONCLUSIONS 56
REFERENCES 59
FIGURES 65
參考文獻 Altendorfner, F., Kuhl, J., Zigan, L., and Leipertz, A. 2011. Study of the influence of electric fields on flames using planar LIF and PIV techniques. Proc. Combust. Inst., 33. 3195–3201.
Belhi, M., Domingo, P., and Vervisch, P. 2010. Direct numerical simulation of the effect of an electric field on flame stability. Combust. Flame, 157. 2286–2297.
Bak, M.S., Im, S.K., Mungal, M.G., and Cappelli, M.A. 2013. Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas. Combust. Flame, 160. 2396–2403.
Belhi, M., Domingo, P., and Vervisch, P. 2013. Modeling of the effect of DC and AC electric fields on the stability of a lifted diffusion methane/air flame. Combust. Theor. Model., 17(4), 749–787.
Boulos, M.I., Fauchais, P., and Pfender E., 1994. In Thermal Plasmas: Fundamental And Applications, Plenum Press, New York, pp. 452.
Bradley, D. 1986. The effects of electric fields on combustion processes. In Advanced combustion methods, Academic Press, London, pp. 331–390.
Bradley, D., and Nasser, S.H. 1984. Electrical coronas and burner flame stability. Combust. Flame, 55. 53–58.
Broadwell, J.E., Dahm, W.J.A., and Mungal, M.G. 1984. Blowout of turbulent diffusion flame. Proc. Combust. Inst., 20. 303–310.
Calcote, H.F., and Pease, R.N. 1951. Electrical properties of flames: Burner flames in longitudinal electric fields. Ind. Eng. Chem., 43, 2726–2731.
Cessou, A., Varea, E., Criner, K., Godard, G., and Vervisch, P. 2012. Simultaneous measurement of OH, mixture fraction and velocity fields to investigate flame stabilization enhancement by electric field. Exp. Fluid, 52. 905–917.
Chang, J.S. 1991. Corona discharge processes. IEEE Trans. Plasma Sci., 19(6), 1152–1166.
Chang, T.W., and Chao, Y.C. 2011. The stabilization characteristics of turbulent lifted diffusion flames of CH4/CO blended fuels. Proc. Combust. Inst., 33. 1655–1662.
Chao, Y.C., Chang, Y.L., Wu, C.Y., and Cheng, T.S. 2000. An experimental investigation of the blowout process of a jet flame. Proc. Combust. Inst., 28. 335–342.
Chao, Y.C., Wu, C.Y., Cheng, T.S., and Yuan, T. 2002. Stabilization process of a lifted flame tuned by acoustic excitation. Combust. Sci. Technol., 174. 87–110.
Criner, K., Cessou, A., and Vervisch, P. 2007. A comparative study of the stabilization of propane lifted jet-flames by pulsed, AC and DC high-voltage discharges. Presented at the 3rd European Combustion Meeting, Crete, Greece, April 11–13.
Criner, K., Cessou, A., Louiche, J., and Vervisch, P. 2006. Stabilization of turbulent lifted jet flames assisted by pulsed high voltage discharge. Combust. Flame, 144. 422–425.
Davis, S.G., and Law, C.K. 1998. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust. Sci. Technol., 140. 427–449.
Dunn-Rankin, D., and Weinberg, F.J. 2003. Electric fields, flames, and microgravity. In Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems, NASA Glenn Research Center, Cleveland, Ohio, June 3–6, pp. 309–312.
Ehn, A., Zhu, J.J. Petersson, P., Li, Z.S., Aldén, M., Fureby, C., Hurtig, T., Zettervall, N., Larsson, A., and Larfeldt, J. 2015. Plasma assisted combustion: Effects of O3 on large scale turbulent combustion studied with laser diagnostics and Large Eddy Simulations. Proc. Combust. Inst., 35. 3487–3495.
Everest, D.A., Feikema, D.A., and Driscoll, J.F. 1996. Images of the strained flammable layer used to study the liftoff of turbulent jet flames. Proc. Combust. Inst., 26. 129–136.
Fialkov, A.B. 1997. Investigation on ions in flames. Prog. Energy Combust. Sci., 23. 399–528.
Hasselbrink Jr, E.F., and Mungal, M.G. 1998. Characteristics of the velocity field near the instantaneous base of lifted non-premixed turbulent jet flames. Proc. Combust. Inst., 22. 867–873.
Hegeler, F., and Akiyama, H. 1997. Spatial and temporal distriburion of ozone after a wire-to-plate streamer discharge. IEEE Trans. Plasma Sci., 25(5), 1158–1165.
Hu, J., Rivin, B., and Sher, E. 2000. The effect of an electric field on the shape of co-flowing and candle-type methane-air flames. Exp. Thermal Fluid Sci., 21. 124–133.
Ju, Y., and Sun, W. 2015. Plasma assisted combustion: progress, challenges, and opportunities. Combust. Flame, 162. 529–532.
Kalghatgi, G.T. 1984. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol., 41. 17–29.
Kim, M.K., Ryu, S.K., Won, S.H., and Chung, S.H. 2010. Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow. Combust. Flame, 157. 17–24.
Kim, W., Mungal, M.G., and Cappelli, M.A. 2005. Flame stabilization using a plasma discharge in a lifted jet flame. Presented at the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10–13.
Kribs, J.D., Shah, P.V., Hutchins, A.R., Reach, W.A., Muncey, R.D., June, M.S., Saveliev, A., and Lyons, K.M. 2016. The stabilization of partially-premixed jet flames in the presence of high potential electric fields. J. Electrost., 84. 1–9.
Lacoste, D.A., Xu, D.A., Moeck, J.P., and Laux, C.O. 2013. Dynamic response of a weakly turbulent lean-premixed flame to nanosecond repetitively pulsed discharges. Proc. Combust. Inst., 34. 3259–3266.
Lawton, J., and Weinberg, F.J. 1969. Electrical aspects of combustion, Clarendon Press, Oxford, London.
Lee, J., and Chung, S.H. 2001. Characteristics of reattachment and blowout of laminar lifted flames in partially premixed propane jets. Combust. Flame, 127. 2194–2204.
Lee, S.M., Park, C.S., Cha, M.S., and Chung, S.H. 2005. Effect of electric fields on the liftoff of nonpremixed turbulent jet flames. IEEE Trans. Plasma Sci., 33(5), 1703–1709.
Li, Y.H., Wu, C.Y., Chen, B.C., and Chao, Y.C. 2008. Measurements of a high-luminosity flame structure by a shuttered PIV system. Meas. Sci. Technol., 19 045401 (11pp).
Lin, C.K., Jeng, M.S., and Chao, Y.C. 1993. The stabilization mechanism of the lifted jet diffusion flame in the hysteresis region. Exp. Fluid, 14. 353–365.
Lyons, K.M. 2007. Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog. Energy Combust. Sci., 33. 211–231.
Marcum, S.D., and Ganguly, B.N. 2005. Electric-field-induced flame speed modification. Combust. Flame, 143. 27–36.
Miake–Lye, R.C., and Hammer, J.A. 1988. Lifted turbulent jet flame: a stability criterion base on the jet large-scale structure. Proc. Combust. Inst., 22. 817–824.
Muñiz, L., and Mungal, M.G. 1997. Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame, 111. 16–31.
Ombrello, T., Won, S.H., Ju, Y., and Williams. S. 2010. Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3. Combust. Flame, 157. 1906–1915.
Ono, R., and Oda, T. 2004. Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method. J. Phys. D: Appl. Phys., 37. 730–735.
Ono, R., and Oda, T. 2007. Ozone production process in pulsed positive dielectric barrier discharge. J. Phys. D: Appl. Phys., 40. 176–182.
Ruetsch, G.R., Vervisch, L., and Liñán, A. 1995. Effects of heat release on triple flames. Phys. Fluids, 7(6), 1447–1454.
Sakhrieh, A., Lins, G., Dinkelacker, F., Hammer, T., Leipertz, A., and Branston, D.W. 2005. The influence of pressure on the control of premixed turbulent flames using an electric field. Combust. Flame, 143. 313–322.
Schmidt, J., Kostka, S., Lynch, A., and Ganguly, B.N. 2012. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current–voltage-induced perturbations of a premixed propane/air flame. Exp. Fluid, 52. 905–917.
Starikovskiy, A., and Aleksandrov, N. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci., 39. 61–110.
Starikovskiy, A.Yu. 2005. Plasma supported combustion. Proc. Combust. Inst., 30. 2405–2417.
Strayer, B.A., Posner, J.D., Dunn-Rankin, D., and Weinberg, F.J. 2002. Simulating microgravity in small diffusion flames by using electric fields to counterbalance natural convection. Proc. R. Soc. London, Ser. A, 458, 1151–1166.
Tacke, M.M., Geyer, D., Hassel, E.P., and Janicka, J. 1998. A detailed investigation of the stabilization point of lifted turbulent diffusion flames. Proc. Combust. Inst., 27. 1157–1165.
Upatnieks, A., Driscoll, J.F., and Ceccio, S.L. 2002. Cinema particle imaging velocimetry time history of the propagation velocity of the base of a lifted turbulent jet flame. Proc. Combust. Inst., 29. 1897–1903.
Upatnieks, A., Driscoll, J.F., Rasmussen, C.C., and Ceccio, S.L. 2004. Liftoff of turbulent jet flames—assessment of edge flame and other concepts using cinema-PIV. Combust. Flame, 138. 259–272.
Vanquickenborne, L., and van Tigglen, A. 1966. The stabilization mechanism of Lifted diffusion Flame. Combust. Flame, 10. 59–69.
Vincent-Randonnier, A., Larigaldie, S., Magre, P., and Sabel’nikov, V. 2007. Plasma assisted combustion: effect of a coaxial DBD on a methane diffusion flame. Plasma Sources Sci. Technol., 16(1), 149–160.
Vinogradov, J., Sher, E., Rutkevich, I., and Mond, M. 2001. Voltage-current characteristics of a flame-assisted unipolar corona. Combust. Flame, 127. 2041–2050.
Watson, K.A., Lyons, K.M., Donbar, J.M., and Carter, C.D. 1999. Observation on the leading edge in lifted flame stabilization. Combust. Flame, 119. 199–202.
Willert, C.E., and Gharib, M. 1991. Digital particle image velocimetry. Exp. Fluid, 10. 181–193.
Wisman, D.L., Marcum, S.D., and Ganguly, B.N. 2008. Chemi-Ion-Current-Induced Dissociative Recombination in Premixed Hydrocarbon/Air Flames. J. Propul. Power, 24(5). 1079-1084.
Won, S.H., Cha, M.S., Park, C.S., and Chung, S.H. 2007. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets. Proc. Combust. Inst., 31. 963–970.
Won, S.H., Ryu, S.K., Kim, M.K., Cha, M.S., and Chung, S.H. 2008. Effect of electric fields on the propagation speed of tribrachial flames in coflow jets. Combust. Flame, 152. 496–506.
Wu, C.Y., Chao, Y.C., Cheng, T.S., Li, Y.H., Lee, K.Y., and Yuan, Tony. 2006. The blowout mechanism of turbulent jet diffusion flames. Combust. Flame, 145. 481–494.
Xiong, Y., Cha, M.S., and Chung, S.H. 2015. AC electric field induced vortex in laminar coflow diffusion flames. Proc. Combust. Inst., 35. 3513–3520.
Yoshino, K., Esmond, J.R., Freeman, D.E., and Parkinson W.H., 1993. Measurements of absolute absorption cross sections of ozone in the 185–254 nm wavelength region and the temperature dependence. J. Geophys. Res., 98. 5205.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-06-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-06-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw