進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2908201800563400
論文名稱(中文) 電氣火災鑑定及衍生戴奧辛分析
論文名稱(英文) Analyses of electrical fire causes and derived dioxins
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 劉獻文
研究生(英文) Hsien-Wen Liu
學號 P56031191
學位類別 碩士
語文別 英文
論文頁數 106頁
口試委員 指導教授-王鴻博
口試委員-黃鈺軫
口試委員-簡繹驥
口試委員-孫亦文
中文關鍵字 熔痕鑑定  燃燒動力  戴奧辛 
英文關鍵字 Molten mark identification  combustion kinetics  dioxins 
學科別分類
中文摘要 熔痕鑑定是電氣火災調查的重要課題,現階段因缺乏公認有效之鑑定方式而難以取得公信力。消防署與消防機關之火調人員現行使用的鑑定技術多為「金相法」,屬破壞性鑑定技術,主觀性較強,判定因素也未具有獨立性,仍存誤判風險,尤其對火災關係人、司法官等無相關專業背景之人員解讀困難,易產生質疑。因此,本研究重點是發展一種具非破壞性、再現性與客觀性的火災鑑定實務方法。結合X射線分析方法例如:繞射(XRD)與近緣吸收(XANES)光譜,獲得8個實務樣品之化學結構分析數據,確定造成一次痕與二次痕的差異,成為熔痕鑑定可靠方法之。尤其搭配X射線螢光(XRF)分析,顯示所獲之Cl/Cu比例數據與化學結構結果具關聯性,也指出XRF可做為相對簡單、有效、及快速之鑑定實務選擇方法。
為進一步了解PVC電線之氧化反應動力及衍生毒性物質,除以熱重分析研究其氧化反應動力參數,並且分析燃燒衍生含氯戴奧辛(PCDD/F)等有毒物質之排放係數。實驗結果發現低氧燃燒衍生之戴奧辛,其低氯數與高氯數戴奧辛比例接近,生成機制偏向前驅物異相催化反應。由建築物火災溫度曲線可發現火勢於成長期發展快速,極快之升溫速度不利戴奧辛生成,但火勢進入最盛期後,火場溫度正好位於戴奧辛生成溫度區段,極有可能產生大量劇毒戴奧辛。以實務狀況而言,考量發現火災、受理報案至趕抵現場之時間,消防人員在最盛期到達現場之機會非常高,接觸到高濃度戴奧辛之可能性極大,故接近火場之人員均應將個人空氣呼吸器完整穿戴以維護自身安全,期能藉由提供此研究結果與數據,強化救災人員與火場鄰近居民對危害物質之認知,適時採取有效之預防措施。
英文摘要 Identification of molten marks is critical for the electrical fire investigation. However, a lack of public acceptable identification methods has challenged the credibility of investigators. The current practiced metallographic method came with the risk of misjudgment for subjective assessment and nonspecific characteristics for primary molten marks (PMMs) or secondary molten marks (SMMs). This work focuses on the development of a nondestructive, reproducible, and objective molten mark identification method. The differences of chemical structure between PMMs and SMMs is distinguished by the combined methods including X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES), which is verified as a reliable method. X-ray fluorescence spectrometer (XRF) is also used for on-site identification. The analysis of the XRF is shown the corresponding relevance with that of the XRD and XANES data, which proves the feasibility of this alternative method.
To realize the kinetics and derived toxic species from the burning of PVC wire jacket, the weight lost data are determined by thermogravimetric analysis. It is clear that by GC/MS dioxins are formed at 827-1083 K. Toxic dioxin emissions during the PVC wire burning may also have a negative impact to the fire fighters. The better understanding of the dioxin formation during electrical fires may reduce the risk of the fire fighters and victims to a great extent.
論文目次 摘要 I
Abstract II
誌謝 III
Content IV
LIST OF TABLES VII
LIST OF FIGURES IX
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE STUDIES 3
2.1 Necessity of electrical fire identification 3
2.2 Bottleneck of current identification techniques 6
2.3 Attemptable nondestructive identification methods 15
2.4 Oxidation kinetics 22
2.5 Dioxins 23
2.5.1 Background of PCDD/Fs 23
2.5.2 PCDD/Fs emission caused by combustion 24
2.5.3 Formation mechanism of PCDD/Fs 29
2.5.4 Health impact of PCDD/Fs 29
2.5.5 Background of PBDD/Fs 30
2.5.6 Background of PBDEs 33
2.6 PVC wire combustion 37
2.6.1 Emissions of PVC wire combustion 37
2.6.2 PVC wire decomposition 37
2.6.3 Effect factors of PVC material pyrolysis 38
CHAPTER 3 EXPERIMENT METHODS 43
3.1 Experimental procedures 43
3.2 Preparation of molten mark samples 45
3.4.1 X-ray Diffraction (XRD) 50
3.4.2 X-ray Absorption Spectroscopy 50
3.4.3 X-Ray Fluorescence Spectrometer (XRF) 51
3.4.4 Elemental Analyzer (EA) 51
3.4.5 Thermogravimetric analyzer (TGA) 51
3.4.6 Gas chromatography/Mass spectrometer (GC-MS) 52
CHAPTER 4 RESULTS AND DISCUSSION 54
4.1 Identification of Molten Marks in Electrical Fires 54
4.2 Wire Oxidation Kinetics 70
4.3 Exploratory research: PCDD/Fs formation during PVC wire burning 77
4.3.1 Effect of hypoxic burning temperature on PCDD/Fs formation 77
4.3.2 Major PCDD/Fs formation from burning of PVC wires 78
4.3.3 Effect of copper catalysis on PCDD/Fs formation 79
4.4 Exploratory research: PBDD/Fs formation from PVC wire burning 86
4.4.1 PBDD/Fs formation from burning of PVC wires 86
4.4.2 Effect of copper catalysis on PBDD/Fs formation 88
4.5 Exploratory research: PBDEs emissions from PVC wire burning 94
4.5.1 PBDEs emissions from PVC wire burning 94
4.5.2 Copper catalytic formation of PBDEs 95
CHAPTER 5 CONCLUSION 100
REFERENCES 101
參考文獻 A Gaur1, B. D. S., S K Joshi2. (2009). Copper K-edge XANES of Cu(I) and Cu(II) oxide mixtures. Conference Series, 190, 4.
AB, L. I. (2016). Dendrite Arm Spacing. from http://www.lri.se/files/soft03_14.html
Aboulkas, A., & El Harfi, K. (2008). Study of the Kinetics and Mechanisms of Thermal Decomposition of Moroccan Tarfaya Oil Shale and Its Kerogen. Oil Shale, 25(4).
Agency, N. F.
Altwicker, E., & Milligan, M. (1993). Formation of dioxins: competing rates between chemically similar precursors and de novo reactions. Chemosphere, 27(1-3), 301-307.
Anderson, D., & Fisher, R. (2002). Sources of dioxins in the United Kingdom: The steel industry and other sources (Vol. 46).
BABRAUSKAS, V. (2006). Arc Beads from Fires: Can ‘Cause’ Beads Be Distinguished from ‘Victim’ Beads by Physical or Chemical Testing?
Buekens, A., Stieglitz, L., Hell, K., Huang, H., & Segers, P. (2001). Dioxins from thermal and metallurgical processes: recent studies for the iron and steel industry. Chemosphere, 42(5), 729-735.
C.Y. Chen, C. Y. C., J.T. Wang, J.T. Wang. (2003). SIMS depth profiling analysis of electrical arc residues in fire investigation. Applied Surface Science, 203–204, 6.
Cains, P. W., McCausland, L. J., Fernandes, A. R., & Dyke, P. (1997). Polychlorinated Dibenzo-p-dioxins and Dibenzofurans Formation in Incineration:  Effects of Fly Ash and Carbon Source. Environmental Science & Technology, 31(3), 776-785.
Chakrabarti, S., Chaudhuri, B., Bhattacharjee, S., Das, P., & Dutta, B. K. (2008). Degradation mechanism and kinetic model for photocatalytic oxidation of PVC–ZnO composite film in presence of a sensitizing dye and UV radiation. Journal of hazardous materials, 154(1), 230-236.
Chen, Y., Bi, X., Mai, B., Sheng, G., & Fu, J. (2004). Emission characterization of particulate/gaseous phases and size association for polycyclic aromatic hydrocarbons from residential coal combustion. Fuel, 83(7), 781-790.
Costa, L. G., & Giordano, G. (2007). Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology, 28(6), 1047-1067.
Darnerud, P. O. (2008). Brominated flame retardants as possible endocrine disrupters. International Journal of Andrology, 31(2), 152-160.
Dictionary, E. S. (2002). Environmenyal Scientice Dictionary. Environmenyal Scientice Dictionary. 2002, from http://terms.naer.edu.tw/detail/1317712/
DING Min-ju, W. Y., ZHANG Cheng-gong, ZHANG Yong-feng, ZENG yi, GU Jing-long. (2013). Study on the Primary and Secondary Copper Molten Marks by Laser Raman Micro-spectroscopy. Chinese Journal of Forensic Sciences, 2013-04, 5.
Engineering., W. F. ELECTRICAL FIRE CAUSES. from http://www.waltersforensic.com/articles/fire_investigation/vol5-no2.htm
Eui-Pyeong LEE, H. O., Tsutomu SEKI, Hideo HASEGAWA, Shuji IMADA, Isao YASHIRO. (2000). Study on Discrimination between Primary and Secondary Molten Marks by DAS. 50, 12.
Eui-Pyeong LEE, H. O., Tsutomu SEKI, Hideo HASEGAWA, Shuji IMADA, Isao YASHIRO. (2001). A Fundamental Study on Electrical Molten Marks. Bulletin of Japan Association Fire Science and Engineerinng, Vol.51. No. 1, 10.
Eui-Pyeong Lee, H. O., Yoshiyuki Matsubara, Tsutomu Seki, Hideo Hasegawa, Shuji Imada, Isao Yashiro. (2002). Study on discrimination between primary and secondary molten marks using carbonized residue. Fire Safety Journal, 37, 16.
Hornung, M. W., Zabel, E. W., & Peterson, R. E. (1996). Toxic Equivalency Factors of Polybrominated Dibenzo-p-dioxin, Dibenzofuran, Biphenyl, and Polyhalogenated Diphenyl Ether Congeners Based on Rainbow Trout Early Life Stage Mortality. Toxicology and Applied Pharmacology, 140(2), 227-234.
Howitt, D. G. (1998). The Chemical Composition of Copper Arc Beads: A Red Herring for the Fire Investigator. Fire and Arson Investigator, Vol. 48. No. 3, 6.
Idris, S. S., Rahman, N. A., Ismail, K., Alias, A. B., Rashid, Z. A., & Aris, M. J. (2010). Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource technology, 101(12), 4584-4592.
Iino, F., Imagawa, T., Takeuchi, M., Sadakata, M., & Weber, R. (1999). Formation rates of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons, activated carbon and phenol. Chemosphere, 39(15), 2749-2756.
Jiménez, A., Berenguer, V., López, J., & Sánchez, A. (1993). Thermal degradation study of poly(vinyl chloride): Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 50(9), 1565-1573.
K. Janssens, G. V., I. Deraedt, A. Aerts, B. Vekemans, L. Vincze, F. Wei, I. Deryck, O. Schalm, F. Adams, A. Rindby, A. Kn¨ochel, A. Simionovici, A. Snigirev4. (2000). Use of Microscopic XRF for Non-destructive Analysis in Art and Archaeometry. X-RAY SPECTROMETRY, X-Ray Spectrom. 29,, 18.
Kang, H. K. (1993). Dioxin, Health Effects. Handbook of Hazardous Materials, 201.
Kim, E.-J., Oh, J.-E., & Chang, Y.-S. (2003). Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Science of the Total Environment, 311(1), 177-189.
Kitamura, Y. (2015, 2015/09/02). 短絡痕を断面切断した観察と金属組織. from http://www7a.biglobe.ne.jp/~fireschool2/d-A1-56-3.html
Kuan-Heng Liu, Y.-H. S., Guo-Ju Chen, and Jaw-Min Chou. (2015). Microstructural Study on Oxygen Permeated Arc Beads. Nanomaterials, 2015, 8.
Kuan-Heng Liu, Y.-H. S., Guo-Ju Chen, Jaw-Min Chou. (2015). Microstructural Study on Molten Marks of Fire-Causing Copper Wires. Materials, 2015,8, 14.
Kumar, S., Dhar, H., Nair, V. V., Bhattacharyya, J. K., Vaidya, A. N., & Akolkar, A. B. (2016). Characterization of municipal solid waste in high-altitude sub-tropical regions. Environmental Technology, 37(20), 2627-2637.
Lahl, U. (1994). Sintering plants of steel industry - PCCD/F emission status and perspectives (Vol. 29).
Lai, Y.-C., Lee, W.-J., Li, H.-W., Wang, L.-C., & Chang-Chien, G.-P. (2007). Inhibition of Polybrominated Dibenzo-p-dioxin and Dibenzofuran Formation from the Pyrolysis of Printed Circuit Boards. Environmental Science & Technology, 41(3), 957-962.
Lexén, K., de Wit, C., Jansson, B., Kjeller, L.-O., Kulp, S.-E., Ljung, K., Söderström, G., & Rappe, C. (1993). Polychlorinated dibenzo-p-dioxin and dibenzofuran levels and patterns in samples from different Swedish industries analyzed within the Swedish dioxin survey. Chemosphere, 27(1), 163-170.
Liebman, S. A., Ahlstrom, D. H., & Foltz, C. R. (1978). Thermal degradation studies of PVC with time-resolved pyrolysis GC and derivative TGA. Journal of Polymer Science: Polymer Chemistry Edition, 16(12), 3139-3150.
Luijk, R., Dorland, C., Smit, P., Jansen, J., & Govers, H. A. J. (1994). The role of bromine in the de novo synthesis in a model fly ash system. Chemosphere, 28(7), 1299-1309.
Ma, S., Lu, J., & Gao, J. (2002). Study of the Low Temperature Pyrolysis of PVC. Energy & Fuels, 16(2), 338-342.
McKay, G. (2002). Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration. Chemical Engineering Journal, 86(3), 343-368.
Melber, C., Kielhorn, J., Galal-Gorchev, H., & Sheffer, M. (1998). Environmental Health Criteria 205. Polybrominated Dibenzo-p-Dioxins and Dibenzofurans.
Menad, N., Björkman, B., & Allain, E. G. (1998). Combustion of plastics contained in electric and electronic scrap. Resources, conservation and recycling, 24(1), 65-85.
MO Shan-jun, Z. F.-j., LIANG Dong,LING Si-yang. (2013). Impact Analysis to Microstructure Primary Short Circuit Melted Mark under Different Heat Dissipation Condition. Sciverse ScienceDirect, 52(Procedia Engineering), 5.
PANAGIOTOU, T., & LEVENDIS, Y. A. (1996). Observations on the Combustion of Pulverized PVC and Poly (ethylene). Combustion science and technology, 112(1), 117-140.
Programme, U. N. E., Organization, W. H., Safety, I. P. o. C., & Organisation, I. L. (1994). Environmental Health Criteria: Brominated diphenyl ethers: World Health Organization.
Research, U. S. E. P. A. O. o., & Development. (1998). The Inventory of Sources of Dioxin in the United States: Review Draft: U.S. Environmental Protection Agency, Office of Research and Development.
Rifkin, E., & LaKind, J. (1991). Dioxin bioaccumulation: key to a sound risk assessment methodology. Journal of toxicology and environmental health, 33(1), 103-112.
Safe, S. (1990). Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Critical reviews in toxicology, 21(1), 51-88.
Server., U. D. W. Melt Bead Analysis Arcing or Fire First? , from http://depts.washington.edu/vehfire/ignition/electrical/auger.html
Shea, J. J. (2007). Conditions for Series Arcing Phenomena in PVC Wiring: National Emergency Training Center.
shih hsu mei, l. k. c., tan shihh siang. (2011). China Patent No.: 广西国杰斯消防科技有限公司.
Shuji Imada, H. H. (2005). A study on Discrinination Between Primary and secondary Molten Marks on Blades of Elsctric Plugs by DAS. 法科學技術, 10, 10.
Soudais, Y., Moga, L., Blazek, J., & Lemort, F. (2007). Coupled DTA–TGA–FT-IR investigation of pyrolytic decomposition of EVA, PVC and cellulose. Journal of Analytical and Applied Pyrolysis, 78(1), 46-57.
Takaoka, M., Shiono, A., Yamamoto, T., Uruga, T., Takeda, N., Tanaka, T., Oshita, K., Matsumoto, T., & Harada, H. (2008). Relationship between dynamic change of copper and dioxin generation in various fly ash. Chemosphere, 73(1), S78-S83.
Tian Xing-Ling, Z. X., Gao Feng. (2008). Nondestructive Testing and analysis Technology in the field of Heritage Preservation. 無損檢測, 30卷,30期, 5.
Vonderheide, A. P., Mueller, K. E., Meija, J., & Welsh, G. L. (2008). Polybrominated diphenyl ethers: Causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity. Science of the Total Environment, 400(1), 425-436.
Wang, D., Xu, X., Chu, S., & Li, Q. X. (2006). Polychlorinated naphthalenes and other chlorinated tricyclic aromatic hydrocarbons emitted from combustion of polyvinylchloride. Journal of hazardous materials, 138(2), 273-277.
Wang, D., Xu, X., Chu, S., & Zhang, D. (2003). Analysis and structure prediction of chlorinated polycyclic aromatic hydrocarbons released from combustion of polyvinylchloride. Chemosphere, 53(5), 495-503.
WANG Yue, M. S.-j., LIANG Dong, YANG Wen-bing, WANG Li, ZHENG Fang-jie. (2013). Limitation Analysis of Electrical Fire Metallographic Identification Technology. Procedia Engineering, 52, 6.
Watanabe, I., & Sakai, S.-i. (2003). Environmental release and behavior of brominated flame retardants. Environment International, 29(6), 665-682.
Weber, R., & Kuch, B. (2003). Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated–chlorinated dibenzodioxins and dibenzofurans. Environment International, 29(6), 699-710.
Ying Wu, D. H. (2012). Metallurgical and composition analysis of melted marks due to electrical failures. MECHANIKA, 18(2), 6.
yun, w. (2012). china Patent No.
Zhang, M., Buekens, A., & Li, X. (2016). Brominated flame retardants and the formation of dioxins and furans in fires and combustion. Journal of hazardous materials, 304, 26-39.
Zhou, T., Taylor, M. M., DeVito, M. J., & Crofton, K. M. (2002). Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicol Sci, 66(1), 105-116.
王靜婷. (2001). Surface Analysis of Fire Investigation for Short Circuit by Applying Second Ion Mass Spectrometer (master), central police university.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw