進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2908201710302400
論文名稱(中文) 探討腕隧道解離手術對於屈指肌腱之生物力學特性的影響
論文名稱(英文) Effects of Carpal Tunnel Release on Biomechanical Behavior of Flexor Tendons - A Clinical Study
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 陳昕怡
研究生(英文) Hsin-Yi Chen
學號 P86044019
學位類別 碩士
語文別 英文
論文頁數 65頁
口試委員 指導教授-蘇芳慶
口試委員-孫永年
口試委員-周一鳴
口試委員-楊岱樺
中文關鍵字 超音波  腕隧道症候群  腕隧道解離手術  扳機指  弓弦效應  屈指淺肌  屈指深肌  肌腱機械材料特性 
英文關鍵字 ultrasound  carpal tunnel syndrome (CTS)  carpal tunnel release (CTR)  trigger finger (TF)  bowstring  flexor digitorum superficialis (FDS)  flexor digitorum profundus (FDP)  mechanical property of tendon 
學科別分類
中文摘要 腕隧道症候群為臨床上常見之手部疾病,主要為正中神經於腕隧道內受到壓迫所導致。患者常見之症狀為正中神經所支配的範圍,產生麻木、刺痛或甚至失去感覺的情形,進而影響日常生活手部功能動作。對於症狀較為嚴重的腕隧道症候群患者,則須考慮接受腕隧道解離手術,此手術方式主要是將橫腕韌帶切開以減緩正中神經受到壓迫的情形。然而,臨床上發現腕隧道症候群患者於接受腕隧道解離手術後,部分患者有扳機指的症狀發生。許多研究歸咎的可能危險因子為解離手術後,手部因減少橫腕韌帶支持而造成屈指肌腱的「弓弦」現象,此現象可能導致生物力學上的改變。為了對可能的致病機轉提供相關資訊,因此本研究利用超音波影像,結合自行開發的等速肌力評估系統,量測屈指肌腱於解離手術後之生物力學特性的變化情形。
本研究以十四位位需進行腕隧道解離手術之腕隧道症候群患者為研究對象,並以患側中指為施測手指。本研究共分為兩部分,第一部分為探討屈指肌腱之機械材料力學性質,第二部分為量測屈指肌腱於腕隧道內之掌側-背側方向位移量以及掌指關節處之進入角度改變量。第一部分的研究結果顯示屈指淺肌之肌腱力量、肌腱韌度以及貢獻程度於手術後有顯著增加的情形。由於手術後明顯改善腕隧道症候群之症狀,因此上述參數之改變可能代表著屈指淺肌肌腱有更好的力量表現、更好的力量表現效率以及較佳的復原程度。第二部分之結果發現手術後屈指肌腱不僅於腕隧道內有向掌側位移的情形,於掌骨關節處之進入角度亦有增加的趨勢。此外於相關性分析的部分,發現屈指肌腱於腕隧道內之掌側-背側方向位移量與掌指關節處之進入角度改變量有很強的正相關,提供腕隧道解離手術誘發扳機指發生的可能機制。
本研究結果完整的呈現腕隧道解離手術後,屈指肌腱在生物力學特性上的改變情形,也對於腕隧道解離患者較易誘發扳機指的現象,提供了相關致病機轉的資訊。
英文摘要 Carpal tunnel syndrome (CTS) is a common disorder of the hand in clinics and is caused by pressure on the median nerve. The main symptoms include numbness, tingling and even loss of sensation in the area of fingers that receive sensory and motor function from the median nerve, and this may then further influence hand functions in daily life. For severe CTS patients, carpal tunnel release (CTR) surgery is recommended to decompress the median nerve by incising the transverse carpal ligament (TCL) in the carpal tunnel. However, it is observed that a noticeable percentage of CTR patients develop symptoms of trigger finger (TF) after the release surgery. Among the possible risk factors that have been investigated, many studies have attributed this phenomenon to the lack of the support of the TCL in the wrist after CTR. Because the restraining effect of the TCL is lost, the “bowstring” effect of the flexor tendon might occur and further result in biomechanical changes in the hand. In order to provide more information on the possible pathophysiologic mechanism in this context, ultrasonography and a custom-designed dynamometer were used to measure the change in biomechanical behavior of flexor tendon post CTR surgery in this study.
Fourteen subjects with CTS who underwent ultrasonographically guided percutaneous CTR surgery were recruited in this study. The long finger of the symptomatic hand was the examined finger. The first part of the study was to investigate the mechanical properties of flexor tendon; the second was to measure the volar-dorsal migration in the carpal tunnel and the change in the entrance angle at the MCP joint. The results with regard to mechanical properties demonstrated that the FDS tendon force, FDS tendon stiffness at linear region and FDS tendon contribution all increased significantly post release. Because the symptoms of CTS were relieved after the release surgery, these results might indicate better force performance, better efficiency of force performance and better recovery, respectively. In the second part of the study, greater distance between the FDS tendon and capitate bone, and greater angle between the flexor tendon and metacarpal bone, were found post release. Furthermore, a strong positive correlation was also found between volar-dorsal migration and the change in the entrance angle, providing evidence of a possible mechanism that predisposes CTR patients to TF.
This study provides more information regarding the changes in biomechanical behavior of flexor tendons after the release surgery, and evidence of a possible pathophysiologic mechanism that would predispose CTR patients to subsequently developing TF.
論文目次 中文摘要 I
Abstract III
Contents V
List of Table VIII
List of Figure VIII
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Anatomy of Carpal Tunnel 1
1.1.2 Anatomy of Finger 5
1.1.3 Carpal Tunnel Syndrome (CTS) 8
1.1.4 Carpal Tunnel Release (CTR) 10
1.1.5 Trigger Finger (TF) 12
1.1.6 Correlation between Carpal Tunnel Release and Trigger Finger 13
1.1.7 Force performance 14
1.1.8 Bowstring Effect 14
1.2 Motivation 15
1.3 Specific Aims and Hypotheses 16
Chapter 2 Materials and Methods 17
2.1 Subjects 17
2.2 Experimental Setup 18
2.2.1 Ultrasound 18
2.2.2 Custom-Designed Dynamometer for Fingers 19
2.3 Procedure 21
2.3.1 Part I: Mechanical Properties 21
2.3.2 Part II: Volar-Dorsal Migration and Change in the Entrance Angle 23
2.4 Parameters 24
2.4.1 Part I: Mechanical Properties 24
2.4.1.1 Tendon Displacement 24
2.4.1.2 Tendon Moment Arm 26
2.4.1.3 Tendon Force 27
2.4.1.4 FDP Tendon Stiffness 27
2.4.1.5 FDS Tendon Stiffness 29
2.4.2 Part II: Volar-Dorsal Migration and Change in the Entrance Angle 30
2.4.2.1 Distance between the FDS Tendon and Capitate Bone 30
2.4.2.2 Volar-Dorsal Migration during Slow-Ramped MVIC 31
2.4.2.3 Angle between the Flexor Tendon and Metacarpal Bone 31
2.4.2.4 Change in the Entrance Angle during Slow-ramped MVIC 33
2.5 Statistical Analysis 33
Chapter 3 Results 34
3.1 Part I: Mechanical Properties 34
3.1.1 Tendon Moment Arm 34
3.1.2 Maximum Flexion Torque 35
3.1.3 Maximum Tendon Displacement 36
3.1.4 Maximum Tendon Force 37
3.1.5 Tendon Stiffness at the Linear Region 38
3.1.6 Tendon Contribution at the PIP Joint 39
3.2 Part II: Volar-Dorsal Migration and Change in the Entrance Angle 40
3.2.1 Distance between the FDS Tendon and Capitate Bone 40
3.2.1.1 Wrist Neutral 40
3.2.1.2 Wrist 30° Flexion 41
3.2.2 Volar-Dorsal Migration during Slow-Ramped MVIC 42
3.2.3 Angle between the Flexor Tendon and Metacarpal Bone 43
3.2.3.1 Wrist Neutral 43
3.2.3.2 Wrist 30° Flexion 45
3.2.4 Change in the Entrance Angle during Slow-Ramped MVIC 47
3.2.4.1 Wrist Neutral 47
3.2.4.2 Wrist 30° flexion 48
3.2.5 Correlation 49
Chapter 4 Discussions 51
4.1 Part I : Mechanical Properties 51
4.1.1 Tendon Moment Arm 51
4.1.2 Maximum Flexion Torque 52
4.1.3 Maximum Tendon Displacement 52
4.1.4 Maximum Tendon Force 52
4.1.5 Tendon Stiffness at the Linear Region 53
4.1.6 Tendon Contribution at the PIP Joint 54
4.2 Part II: Volar-Dorsal Migration and Change in the Entrance Angle 55
4.2.1 Distance between the FDS Tendon and Capitate Bone 55
4.2.2 Volar-Dorsal Migration during Slow-Ramped MVIC 56
4.2.3 Angle between the Flexor Tendon and Metacarpal Bone 56
4.2.4 Change in the Entrance Angle during Slow-Ramped MVIC 57
4.2.5 Correlation 58
4.3 Limitations 59
Chapter 5. Conclusions 60
References 61
參考文獻 [1] Presazzi A, Bortolotto C, Zacchino M, Madonia L, Draghi F. Carpal tunnel: Normal anatomy, anatomical variants and ultrasound technique. J Ultrasound. 2011;14:40-6.
[2] Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I. Prevalence of carpal tunnel syndrome in a general population. JAMA. 1999;282:153-8.
[3] Luckhaupt SE, Dahlhamer JM, Ward BW, Sweeney MH, Sestito JP, Calvert GM. Prevalence and work-relatedness of carpal tunnel syndrome in the working population, United States, 2010 National Health Interview Survey. Am J Ind Med. 2013;56:615-24.
[4] Goss BC, Agee JM. Dynamics of intracarpal tunnel pressure in patients with carpal tunnel syndrome. J Hand Surg Am. 2010;35:197-206.
[5] Okutsu I, Ninomiya S, Hamanaka I, Kuroshima N, Inanami H. Measurement of pressure in the carpal canal before and after endoscopic management of carpal tunnel syndrome. J Bone Joint Surg Am. 1989;71:679-83.
[6] Zhang L, Rehemutula A, Peng F, Yu C, Wang TB, Chen L. Does the ratio of the carpal tunnel inlet and outlet cross-sectional areas in the median nerve reflect carpal tunnel syndrome severity? Neural Regen Res. 2015;10:1172-6.
[7] Geoghegan JM, Clark DI, Bainbridge LC, Smith C, Hubbard R. Risk factors in carpal tunnel syndrome. J Hand Surg Br. 2004;29:315-20.
[8] Szabo RM, Chidgey LK. Stress carpal tunnel pressures in patients with carpal tunnel syndrome and normal patients. J Hand Surg Am. 1989;14:624-7.
[9] Wright TW, Glowczewskie F, Wheeler D, Miller G, Cowin D. Excursion and strain of the median nerve. J Bone Joint Surg Am. 1996;78:1897-903.
[10] Klauser AS, Halpern EJ, De Zordo T, Feuchtner GM, Arora R, Gruber J, et al. Carpal tunnel syndrome assessment with US: value of additional cross-sectional area measurements of the median nerve in patients versus healthy volunteers. Radiology. 2009;250:171-7.
[11] Rempel D, Evanoff B, Amadio PC, de Krom M, Franklin G, Franzblau A, et al. Consensus criteria for the classification of carpal tunnel syndrome in epidemiologic studies. Am J Public Health. 1998;88:1447-51.
[12] Wiesler ER, Chloros GD, Cartwright MS, Smith BP, Rushing J, Walker FO. The use of diagnostic ultrasound in carpal tunnel syndrome. J Hand Surg Am. 2006;31:726-32.
[13] Liao YY, Wu CC, Kuo TT, Chen JP, Hsu YW, Yeh CK. Carpal tunnel syndrome diagnosis by a self-normalization process and ultrasound compound imaging. Med Phys. 2012;39:7402-11.
[14] Zahiri-Azar R, Salcudean SE. Motion estimation in ultrasound images using time domain cross correlation with prior estimates. IEEE Trans Biomed Eng. 2006;53:1990-2000.
[15] Altinok T, Baysal O, Karakas HM, Sigirci A, Alkan A, Kayhan A, et al. Ultrasonographic assessment of mild and moderate idiopathic carpal tunnel syndrome. Clin Radiol. 2004;59:916-25.
[16] Kantarci F, Ustabasioglu FE, Delil S, Olgun DC, Korkmazer B, Dikici AS, et al. Median nerve stiffness measurement by shear wave elastography: a potential sonographic method in the diagnosis of carpal tunnel syndrome. Eur Radiol. 2014;24:434-40.
[17] Miyamoto H, Halpern EJ, Kastlunger M, Gabl M, Arora R, Bellmann-Weiler R, et al. Carpal tunnel syndrome: diagnosis by means of median nerve elasticity--improved diagnostic accuracy of US with sonoelastography. Radiology. 2014;270:481-6.
[18] Mohammadi A, Afshar A, Etemadi A, Masoudi S, Baghizadeh A. Diagnostic value of cross-sectional area of median nerve in grading severity of carpal tunnel syndrome. Arch Iran Med. 2010;13:516-21.
[19] Orman G, Ozben S, Huseyinoglu N, Duymus M, Orman KG. Ultrasound elastographic evaluation in the diagnosis of carpal tunnel syndrome: initial findings. Ultrasound Med Biol. 2013;39:1184-9.
[20] Wong SM, Griffith JF, Hui AC, Tang A, Wong KS. Discriminatory sonographic criteria for the diagnosis of carpal tunnel syndrome. Arthritis Rheum. 2002;46:1914-21.
[21] Ziswiler HR, Reichenbach S, Vogelin E, Bachmann LM, Villiger PM, Juni P. Diagnostic value of sonography in patients with suspected carpal tunnel syndrome: a prospective study. Arthritis Rheum. 2005;52:304-11.
[22] Nakamichi K, Tachibana S. Transverse sliding of the median nerve beneath the flexor retinaculum. J Hand Surg Br. 1992;17:213-6.
[23] Valls-Sole J, Alvarez R, Nunez M. Limited longitudinal sliding of the median nerve in patients with carpal tunnel syndrome. Muscle Nerve. 1995;18:761-7.
[24] Ettema AM, Zhao C, Amadio PC, O'Byrne MM, An KN. Gliding characteristics of flexor tendon and tenosynovium in carpal tunnel syndrome: a pilot study. Clin Anat. 2007;20:292-9.
[25] Miyamoto H, Miura T, Morizaki Y, Uehara K, Ohe T, Tanaka S. Comparative study on the stiffness of transverse carpal ligament between normal subjects and carpal tunnel syndrome patients. Hand Surg. 2013;18:209-14.
[26] Chern TC, Kuo LC, Shao CJ, Wu TT, Wu KC, Jou IM. Ultrasonographically Guided Percutaneous Carpal Tunnel Release: Early Clinical Experiences and Outcomes. Arthroscopy. 2015;31:2400-10.
[27] Akhtar S, Bradley MJ, Quinton DN, Burke FD. Management and referral for trigger finger/thumb. BMJ. 2005;331:30-3.
[28] Sungpet A, Suphachatwong C, Kawinwonggowit V. Trigger digit and BMI. J Med Assoc Thai. 1999;82:1025-7.
[29] Guerini H, Pessis E, Theumann N, Le Quintrec JS, Campagna R, Chevrot A, et al. Sonographic appearance of trigger fingers. J Ultrasound Med. 2008;27:1407-13.
[30] Kim HR, Lee SH. Ultrasonographic assessment of clinically diagnosed trigger fingers. Rheumatol Int. 2010;30:1455-8.
[31] Sato J, Ishii Y, Noguchi H. Comparison of the Thickness of Pulley and Flexor Tendon Between in Neutral and in Flexed Positions of Trigger Finger. Open Orthop J. 2016;10:36-40.
[32] Miyamoto H, Miura T, Isayama H, Masuzaki R, Koike K, Ohe T. Stiffness of the first annular pulley in normal and trigger fingers. J Hand Surg Am. 2011;36:1486-91.
[33] Ferree S, Neuhaus V, Becker SJ, Jupiter JB, Mudgal CS, Ring DC. Risk factors for return with a second trigger digit. J Hand Surg Eur Vol. 2014;39:704-7.
[34] Harada K, Nakashima H, Teramoto K, Nagai T, Hoshino S, Yonemitsu H. Trigger digits-associated carpal tunnel syndrome: relationship between carpal tunnel release and trigger digits. Hand Surg. 2005;10:205-8.
[35] Hayashi M, Uchiyama S, Toriumi H, Nakagawa H, Kamimura M, Miyasaka T. Carpal tunnel syndrome and development of trigger digit. J Clin Neurosci. 2005;12:39-41.
[36] Hombal JW, Owen R. Carpal tunnel decompression and trigger digits. Hand. 1970;2:192-6.
[37] Kim JH, Gong HS, Lee HJ, Lee YH, Rhee SH, Baek GH. Pre- and post-operative comorbidities in idiopathic carpal tunnel syndrome: cervical arthritis, basal joint arthritis of the thumb, and trigger digit. J Hand Surg Eur Vol. 2013;38:50-6.
[38] Kumar P, Chakrabarti I. Idiopathic carpal tunnel syndrome and trigger finger: is there an association? J Hand Surg Eur Vol. 2009;34:58-9.
[39] Goshtasby PH, Wheeler DR, Moy OJ. Risk factors for trigger finger occurrence after carpal tunnel release. Hand Surg. 2010;15:81-7.
[40] King BA, Stern PJ, Kiefhaber TR. The incidence of trigger finger or de Quervain's tendinitis after carpal tunnel release. J Hand Surg Eur Vol. 2013;38:82-3.
[41] Lee SK, Bae KW, Choy WS. The relationship of trigger finger and flexor tendon volar migration after carpal tunnel release. J Hand Surg Eur Vol. 2014;39:694-8.
[42] Ettema AM, Amadio PC, Zhao C, Wold LE, O'Byrne MM, Moran SL, et al. Changes in the functional structure of the tenosynovium in idiopathic carpal tunnel syndrome: a scanning electron microscope study. Plast Reconstr Surg. 2006;118:1413-22.
[43] Sampson SP, Badalamente MA, Hurst LC, Seidman J. Pathobiology of the human A1 pulley in trigger finger. J Hand Surg Am. 1991;16:714-21.
[44] Baker NA, Moehling KK, Desai AR, Gustafson NP. Effect of carpal tunnel syndrome on grip and pinch strength compared with sex- and age-matched normative data. Arthritis Care Res (Hoboken). 2013;65:2041-5.
[45] Fernandez-de-Las-Penas C, Perez-de-Heredia-Torres M, Martinez-Piedrola R, de la Llave-Rincon AI, Cleland JA. Bilateral deficits in fine motor control and pinch grip force in patients with unilateral carpal tunnel syndrome. Exp Brain Res. 2009;194:29-37.
[46] Hsu HY, Su FC, Kuo YL, Jou IM, Chiu HY, Kuo LC. Assessment from Functional Perspectives: Using Sensorimotor Control in the Hand as an Outcome Indicator in the Surgical Treatment of Carpal Tunnel Syndrome. PLoS One. 2015;10:e0128420.
[47] Radwin RG, Sesto ME, Zachary SV. Functional tests to quantify recovery following carpal tunnel release. J Bone Joint Surg Am. 2004;86-A:2614-20.
[48] Jerosch-Herold C, Shepstone L, Miller L, Chapman P. The responsiveness of sensibility and strength tests in patients undergoing carpal tunnel decompression. BMC Musculoskelet Disord. 2011;12:244.
[49] Viegas SF, Pollard A, Kaminksi K. Carpal arch alteration and related clinical status after endoscopic carpal tunnel release. J Hand Surg Am. 1992;17:1012-6.
[50] Momose T, Uchiyama S, Kobayashi S, Nakagawa H, Kato H. Structural changes of the carpal tunnel, median nerve and flexor tendons in MRI before and after endoscopic carpal tunnel release. Hand Surg. 2014;19:193-8.
[51] Netscher D, Mosharrafa A, Lee M, Polsen C, Choi H, Steadman AK, et al. Transverse carpal ligament: its effect on flexor tendon excursion, morphologic changes of the carpal canal, and on pinch and grip strengths after open carpal tunnel release. Plast Reconstr Surg. 1997;100:636-42.
[52] Karalezli N, Kutahya H, Gulec A, Toker S, Karabork H, Ogun TC. Transverse carpal ligament and forearm fascia release for the treatment of carpal tunnel syndrome change the entrance angle of flexor tendons to the A1 pulley: the relationship between carpal tunnel surgery and trigger finger occurrence. ScientificWorldJournal. 2013;2013:630617.
[53] Chuang BI, Hsu JH, Kuo LC, Jou IM, Su FC, Sun YN. Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching. Biomed Eng Online. 2017;16:47.
[54] An KN, Ueba Y, Chao EY, Cooney WP, Linscheid RL. Tendon excursion and moment arm of index finger muscles. J Biomech. 1983;16:419-25.
[55] Franko OI, Winters TM, Tirrell TF, Hentzen ER, Lieber RL. Moment arms of the human digital flexors. J Biomech. 2011;44:1987-90.
[56] Yang TH, Lu SC, Lin WJ, Zhao K, Zhao C, An KN, et al. Assessing Finger Joint Biomechanics by Applying Equal Force to Flexor Tendons In Vitro Using a Novel Simultaneous Approach. PLoS One. 2016;11:e0160301.
[57] Filius A, Thoreson AR, Ozasa Y, An KN, Zhao C, Amadio PC. Delineation of the mechanisms of tendon gliding resistance within the carpal tunnel. Clin Biomech (Bristol, Avon). 2017;41:48-53.
[58] Osamura N, Zhao C, Zobitz ME, An KN, Amadio PC. Evaluation of the material properties of the subsynovial connective tissue in carpal tunnel syndrome. Clin Biomech (Bristol, Avon). 2007;22:999-1003.
[59] Zhao C, Ettema AM, Berglund LJ, An KN, Amadio PC. Gliding resistance of flexor tendon associated with carpal tunnel pressure: a biomechanical cadaver study. J Orthop Res. 2011;29:58-61.
[60] Gabra JN, Gordon JL, Marquardt TL, Li ZM. In vivo tissue interaction between the transverse carpal ligament and finger flexor tendons. Med Eng Phys. 2016;38:1055-62.
[61] Uchiyama S, Coert JH, Berglund L, Amadio PC, An KN. Method for the measurement of friction between tendon and pulley. J Orthop Res. 1995;13:83-9.
[62] Uchiyama S, Amadio PC, Ishikawa J, An KN. Boundary lubrication between the tendon and the pulley in the finger. J Bone Joint Surg Am. 1997;79:213-8.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw