進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2908201704030000
論文名稱(中文) 牙科五級填補窩洞型態的力學效應
論文名稱(英文) Effects of dental cavity configuration in class V restorations on mechanical behaviors
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 吳加昱
研究生(英文) Jia-Yu Wu
學號 P86041045
學位類別 碩士
語文別 中文
論文頁數 60頁
口試委員 指導教授-張志涵
共同指導教授-莊淑芬
口試委員-陳永崇
口試委員-藍鼎勛
中文關鍵字 第五級窩洞  咬合力  窩洞幾何  音洩檢測  數位影像量測  有限元素分析 
英文關鍵字 class V restorations  occlusal force  cavity geometry  acoustic emission  digital image correlation  finite element analysis 
學科別分類
中文摘要 第五級窩洞在牙科中是常見的問題,其窩洞的位置介於齒頸牙釉質及牙本質交界處,牙齒受到咬合力作用下,因彎矩作用在齒頸部會產生高且複雜應力,進而造成樹脂和牙齒之間介面的損壞和復形體的脫落。本研究目的是探討復形體幾何以及咬合力方向的不同,對於牙科第五級窩洞填補所造成的力學影響,利用有限元素分析搭配實驗分析不同樹脂修復對於在承受咬合力下復形體的應力、應變分布以及破壞等力學效應。
本研究分成兩個部分,先用一顆完整的下顎小臼齒一逆向工程原理建成3D模型,以執行有限元素分析。於模型上分別設計四組不同高度與深度的窩洞: D1H2:窩洞深度1 mm,高度2 mm;D1H4 : 窩洞深1 mm,高度4 mm;D2H2 :深度2 mm,高度2mm;D2H4 : 深度2mm,高度4mm。使用有限元素分析法分析出不同幾何形狀的樹脂填補在不同方向負載的情況下,復形體以及介面上應力分布的情形。
於實驗部份,使用三十二顆完整的小臼齒,分別製備出跟有限元素模型一樣的四大組填補窩洞。在牙齒承受200N機械力的過程中,以音洩感測器偵測樹脂修復處因破壞所發出的聲發射,搭配使用影像感應器以連續取像的方式記錄複合樹脂受機械力後變形的影像,藉由數位影像相關法計算牙齒受機械力後,修復體的位移及應變。
在有限元素分析的結果中發現,各組的最大最小主應力以及介面正交應力的最大值都很接近,但分布情況有很大的差異,除了在牙本質、牙釉質以及複合樹脂的交界處都有高應力外,D2H2在邊緣處有較其他組高的最大張應力,但D1H4最大張應力位於牙釉質-牙本質交界處。D1H4則是會產生較大的剪應力,斜向負載的應力皆高於垂直負載,往舌側的斜向力產生較高的張應力,往唇側的斜向力則是產生較高的剪應力。由數位影像相關法量測在應變的分析方面發現,D2H2的位移量最低,但應變值最高,且在上緣處也有高應變,D1H4量測到的結果與之相反,且高剪應變的分布情況最多。從音洩檢測的結果得知,斜向負載擁有較垂直負載多的音洩信號,測得訊號的時間也較早;另一方面,D2H2組產生了最多的音洩信號。
從結果得知,窩洞高度深度造成斜面的傾斜角度不同,導致結果出現差異,D2H2在邊緣處較高的應力和應變,音洩檢測出的訊號也較多,D1H4的邊緣應力較低檢測的訊號較少。負載方向不同使可能發生的破壞形式不同,剪應力較高的情況下復形體整塊脫落的情況增加,而張應力高的情況下,在邊緣處可能更容易發生破裂。
英文摘要 Summary
Dental class V cavities are common tooth lesions. High and complicated stress in the class V resin restorations cause marginal and interfacial debonding or dislodgement. The aim of this study was to examine the effect of cavity configuration on the mechanical behaviors under various direction occlusal loads in class V restorations. This study was divided into two parts: finite element analysis (FEA) and experimental measurements. Four different cavity geometry were designed: D1H2, 1 mm deep and 2 mm high; D1H4, 1 mm deep and 4 mm high; D2H2, 2 mm deep and 2 mm high; and D2H4, 2 mm deep and 4 mm high. Occlusal load was applied at different directions. The stress distributions in the restorations and interface were resolved by a FEA. In the experiment, a 200 N force was loaded on the buccal cusp tip via different directions. An acoustic emission device detected the possible failure hits, and a digital image correlation analysis examined the deformation and strain on the restorations. In the FEA results, the highest max principal stress located in D2H2. Contrarily, D1H4 presented the highest shear stress. The lingually oblique force increased the tensile stress, while the labially oblique force caused the highest shear stress. In the digital image correlation analysis, D2H2 showed less deformation but the greatest strain. D1H4 presented the highest shear strain. In the acoustic emission detection, the obliquely loading groups showed more acoustic emission hits than the vertical loading groups. In the four groups, D2H2 showed the most hits.
With these results. Different cavity depths, heights, and the angulation of interfaces lead to differences in results. D2H2 had high stress and strain, but D1H4 showed high shear strain and low stress.
Keywords: class V restorations, occlusal force, cavity geometry, acoustic emission, digital image correlation, finite element analysis

論文目次 中文摘要 I
Extended Abstract III
致謝 VII
目錄 VIII
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1第五級複合樹脂復形 1
1.1.1.第五級窩洞的介紹 1
1.1.2.第五類型窩洞的成因 2
1.1.3.複合樹脂 3
1.2修復體幾何型態造成的影響 6
1.3咬合力造成的影響 8
1.4牙齒力學行為量測 10
1.5動機與目的 15
第二章 材料與方法 16
2.1有限元素分析 17
2.1.1.三維牙齒幾何模型之建立 17
2.1.2.材料性質與邊界條件 19
2.1.2.模型收斂分析 21
2.2實驗製備 22
2.3 數位影像量測系統(DIC) 24
2.3.1.數位影像量測系統實驗裝置 24
2.3.2.數位影像量測系統驗證 25
2.4聲發射(Acoustic emission) 26
2.4.1.聲發射系統的實驗設置 26
2.5壓力試驗 27
第三章 結果 29
3.1有限元素分析 29
3.1.1.最大主應力與最小主應力 30
3.1.2.剪應力 38
3.1.3.介面正交應力 41
3.2數位影像量測分析 44
3.2.1.二維數位影像量測表面位移與應變 44
3.3音洩檢測 47
第四章 討論 50
4.1負載形式探討 50
4.2窩洞幾何探討 51
4.3探討破壞位置 52
4.4本研究限制 55
第五章 結論 56
參考文獻 57
參考文獻 [1] Perez CdR, Gonzalez MR, Prado NAS, de Miranda MSF, Macêdo MdA, Fernandes BMP. Restoration of noncarious cervical lesions: when, why, and how. International Journal of Dentistry 2011;2012.
[2] Heintze SD. Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dental Materials 2013;29:59-84.
[3] Burke F, Wilson N, Cheung S, Mjör I. Influence of patient factors on age of restorations at failure and reasons for their placement and replacement. Journal of Dentistry 2001;29:317-24.
[4] Grippo JO. Abfractions: a new classification of hard tissue lesions of teeth. Journal of Esthetic and Restorative Dentistry 1991;3:14-9.
[5] Anusavice KJ. Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal–ceramic fixed dental prostheses. Dental Materials 2012;28:102-11.
[6] Senawongse P, Pongprueksa P. Surface roughness of nanofill and nanohybrid resin composites after polishing and brushing. Journal of Esthetic and Restorative Dentistry 2007;19:265-73.
[7] Heymann HO, Sturdevant JR, Bayne S, Wilder AD, Sluder TB, Brunson WD. Examining tooth flexure effects on cervical restorations: a two-year clinical study. The Journal of the American Dental Association 1991;122:41-7.
[8] Van Meerbeek B, Braem M, Lambrechts P, Vanherle G. Morphological characterization of the interface between resin and sclerotic dentine. Journal of Dentistry 1994;22:141-6.
[9] Curtis AR, Palin WM, Fleming GJ, Shortall AC, Marquis PM. The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength. Dental Materials 2009;25:188-97.
[10] Kemp-Scholte CM, Davidson C. Marginal sealing of curing contraction gaps in class V composite resin restorations. Journal of Dental Research 1988;67:841-5.
[11] Pecie R, Onisor I, Krejci I, Bortolotto T. Marginal adaptation of direct class II composite restorations with different cavity liners. Operative Dentistry 2013;38:E210-E20.
[12] Choi K, Ferracane J, Ryu G, Choi S, Lee M, Park S. Effects of cavity configuration on composite restoration. 2004;29:462-9.
[13] UNO S, TANAKA T, INOUE S, SANO H. The influence of configuration factors on cavity adaptation in compomer restorations. Dental Materials Journal 1999;18:19-31.
[14] Ferracane JL, Mitchem JC. Relationship between composite contraction stress and leakage in Class V cavities. American Journal of Dentistry 2003;16:239-43.
[15] Guimarães JC, Soella GG, Durand LB, Horn F, Baratieri LN, Monteiro Jr S, et al. Stress amplifications in dental non-carious cervical lesions. Journal of Biomechanics 2014;47:410-6.
[16] Jakupović S, Anić I, Ajanović M, Korać S, Konjhodžić A, Džanković A, et al. Biomechanics of cervical tooth region and noncarious cervical lesions of different morphology; three-dimensional finite element analysis. European Journal of Dentistry 2016;10:413.
[17] Stewardson D, Creanor S, Thornley P, Bigg T, Bromage C, Browne A, et al. The survival of Class V restorations in general dental practice: part 3, five-year survival. British Dental Journal 2012;212:E14-E.
[18] Brandini DA, Trevisan CL, Panzarini SR, Pedrini D. Clinical evaluation of the association between noncarious cervical lesions and occlusal forces. The Journal of Prosthetic Dentistry 2012;108:298-303.
[19] Jörgensen K, Matono R, Shimokobe H. Deformation of cavities and resin fillings in loaded teeth. European Journal of Oral Sciences 1976;84:46-50.
[20] Ichim I, Li Q, Loughran J, Swain M, Kieser J. Restoration of non-carious cervical lesions: Part I. Modelling of restorative fracture. Dental Materials 2007;23:1553-61.
[21] Lawn BR, Lee JJ. Analysis of fracture and deformation modes in teeth subjected to occlusal loading. Acta Biomaterialia 2009;5:2213-21.
[22] Pereira FA, Zeola LF, de Almeida Milito G, Reis BR, Pereira RD, Soares PV. Restorative material and loading type influence on the biomechanical behavior of wedge shaped cervical lesions. Clinical Oral Investigations 2016;20:433-41.
[23] Benazzi S, Grosse IR, Gruppioni G, Weber GW, Kullmer O. Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis. Clinical Oral Investigations 2014;18:369-75.
[24] Soares P, Santos‐Filho P, Soares C, Faria V, Naves M, Michael J, et al. Non‐carious cervical lesions: influence of morphology and load type on biomechanical behaviour of maxillary incisors. Australian Dental Journal 2013;58:306-14.
[25] Lee WC, Eakle WS. Possible role of tensile stress in the etiology of cervical erosive lesions of teeth. The Journal of Prosthetic Dentistry 1984;52:374-80.
[26] Gladys S, Van Meerbeek B, Braem M, Lambrechts P, Vanherle G. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. Journal of Dental Research 1997;76:883-94.
[27] Darendeliler S, Darendeliler H, KINOǦLU T. Analysis of a central maxillary incisor by using a three‐dimensional finite element method. Journal of Oral Rehabilitation 1992;19:371-83.
[28] Soares P, Souza L, Verissimo C, Zeola L, Pereira A, Santos‐Filho P, et al. Effect of root morphology on biomechanical behaviour of premolars associated with abfraction lesions and different loading types. Journal of Oral Rehabilitation 2014;41:108-14.
[29] Ameri H, Ghavamnasiri M, Abdoli E. Effects of load cycling on the microleakage of beveled and nonbeveled occlusal margins in class V resin-based composite restorations. J Contemp Dent Pract 2010;11:25-32.
[30] Katona T, Winkler M. Stress analysis of a bulk-filled class V light-cured composite restoration. Journal of Dental Research 1994;73:1470-7.
[31] Robinson A. Caries, Class V cavity preparation and amalgam fillings. British Dental Journal 1967;122:558.
[32] Anderson D. Measurement of stress in mastication. II. Journal of Dental Research 1956;35:671-3.
[33] Lee H-E, Lin C-L, Wang C-H, Cheng C, Chang C-H. Stresses at the cervical lesion of maxillary premolar—a finite element investigation. Journal of Dentistry 2002;30:283-90.
[34] Aw TC, Lepe X, Johnson GH, Mancl L. Characteristics of noncarious cervical lesions: a clinical investigation. The Journal of the American Dental Association 2002;133:725-33.
[35] Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in applied mechanics 1962;7:55-129.
[36] Hakimeh S, Vaidyanathan J, Houpt ML, Vaidyanathan TK, Von Hagen S, School NJD. Microleakage of compomer class V restorations: effect of load cycling, thermal cycling, and cavity shape differences. The Journal of Prosthetic Dentistry 2000;83:194-203.
[37] Corona S, Borsatto M, Dibb RP, Ramos R, Brugnera A, Pecora J. Microleakage of class V resin composite restorations after bur, air-abrasion or Er: YAG laser preparation. Operative Dentistry 2001;26:491-7.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw