進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2908201616341500
論文名稱(中文) 含電紡同排聚苯乙烯纖維/聚丙烯複材之製備與熱性質
論文名稱(英文) Preparation and thermal properties of isotactic polyprepylene composites filled with electrospun isotactic polystyrene fibers
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 李政霖
研究生(英文) Jheng-Lin Lee
學號 N36031057
學位類別 碩士
語文別 中文
論文頁數 105頁
口試委員 指導教授-王紀
口試委員-郭紹偉
口試委員-鄭廖平
口試委員-孫一明
中文關鍵字 電紡絲  同排聚苯乙烯  同排聚丙烯  複合材料 
英文關鍵字 electrospinning  isotactic polystyrene  isotactic polyproplyene  composites 
學科別分類
中文摘要 本研究以12 wt% iPS/o-DCB溶液在室溫下進行電紡絲製備iPS奈米纖維,並以雷射光源打擊電紡液柱不同位置(z),由其散射圖譜中在赤道方向強度分佈的第一個最大值之位置計算得到液柱直徑(dj),發現dj隨z上升而下降。

將電紡所得纖維置於酒精溶液並以超音波震盪後可得纖維均勻分散的酒精溶液,並以兩種方式製備iPS/iPP複材。法一:直接加入iPP粉末到酒精溶液後以抽氣過濾移除酒精;法二:先加水配製成酒精重/水重=55/45的酒精水溶液再加入iPP粉末,並以抽氣過濾移除酒精水溶液。由SEM的照片判斷法二可得到纖維分佈較均勻的複材。

以DSC分析iPS/iPP複材之熱性質,由動態降溫結晶實驗結果發現iPS纖維具有誘導iPP產生晶體的能力且可提高結晶放熱峰peak的溫度(Tpeak)約5 oC;由等溫結晶後升溫實驗發現:Tc<115 oC可觀察到兩個晶體與兩個晶體的熔化峰存在;Tc>125 oC則只觀察到一個與一個晶體的熔化峰存在;由Avrami equation分析得知添加iPS纖維後n值為2.4到2.1;k值為8.6x10-3到3.7x10-2 min-1,較添加前提高一個數量級,代表iPS纖維具有提高iPP整體結晶速度的能力。以SAXS分析則發現,0.1 wt%的複材經過動態結晶與125 oC等溫結晶的熱處理後iPP板晶長周期會增加1 nm。

以AFM掃描iPS電紡纖維表面,發現纖維表面有著高度約為1 nm的顆粒狀結構;而PVA電紡纖維表面則有著深度與寬度約為1與3 nm的鋸齒狀結構,推測此兩結構皆為液柱內相分離後產生的結構。
英文摘要 In this study, iPS nanofibers were obtained by electrospinning of its solution with o-DCB solvent, and laser was showed on the electrospinning jet, jet diameter (dj) was determined from the first intensity maximum of scattering pattern on the equator. It was found that dj decreased with increasing z.

After shocking the iPS fibers in alcohol by ultrasonic liquid processor, fibers were well dispered in alcohol. We used two methods to prepare iPS/iPP composite. Method 1: Add iPP powders into alcohol directly and remove alcohol by vacuum filtration; method 2: Add D.I. water into the alcohol (alcohol/water=55/45) first, then add iPP powders and remove alcohol by vacuum filtration. Fibers were well dispersed on the surface of iPP powders via method 2.

DSC results indicated the -form iPP nucleating ability of iPS fibers and Tpeak also increased with the addition of iPS fibers .From isothermal crystallization, it was found that when Tc<115 oC, there were two melting peaks of -form and -form crystals, but only one melting peak when Tc>125 oC. From Avrami equation, after the addition of iPS fibers the n value is 2.5 to 2.1 and the k value is 8.6x10-3 to3.7x10-2 min-1. SAXS results showed that the long period increased about 1 nm after the dynamic and isothermal heat treatment.

AFM results showed that the surface of iPS fibers were composed of nodular structures. The height of these structures was about 1 nm. However, the surface of as-spun PVA fibers were composed of serrated structures. The height and width of these structures were about 1 and 3 nm.
論文目次 摘要 i
Extended Abstarct ii
誌謝 xiii
目錄 xiv
表目錄 xvii
圖目錄 xviii
符號 xxiii
一、前言 1
二、簡介 2
2.1 電紡絲模式 2
2.2 電紡絲實驗之觀察 3
2.2.1 cone與jet之形態 3
2.2.2 jet whipping之區域 3
2.2.3 電紡纖維之形態 3
2.3 複合材料 3
2.4 原子力顯微鏡 (Atomic Force Microscope, AFM) 4
2.5原子力顯微鏡之操作模式 5
2.5.1 接觸式 (contact mode) 5
2.5.2 非接觸式 (non-contact mode) 5
2.5.3輕敲式 (tapping mode) 5
三、文獻回顧 12
3.1 聚苯乙烯 (Polystyrene, PS) 12
3.1.1聚苯乙烯之簡介 12
3.1.2同排聚苯乙烯(isotactic polystyrene,iPS)之簡介 12
3.1.3同排聚苯乙烯之電紡絲 13
3.2 聚丙烯 (Polypropylene, PP) 13
3.2.1聚丙烯之簡介 13
3.2.2同排聚丙烯(isotactic polypropylene,iPP)之簡介 14
3.2.3同排聚苯乙烯與同態聚丙烯之複合材料 15
3.2.4成核劑誘導iPP的晶型 15
3.3 液柱直徑的量測 16
3.4 R.G.B. theory 17
3.5 結晶動力學,Avrami equation 17
3.6 原子力顯微鏡的應用 18
四、實驗 31
4.1實驗藥品 31
4.2實驗儀器 32
4.3 實驗步驟 35
4.3.1 電紡絲溶液配製 35
4.3.2以雷射散射方式量測電紡絲液柱直徑 35
4.3.3 iPS/iPP複材製備,法一 36
4.3.4 iPS/iPP複材製備,法二 36
4.3.5 POM實驗步驟 37
4.3.6 DSC實驗步驟 37
4.3.7 SAXS實驗步驟 38
4.3.8 SEM實驗步驟 38
4.3.9 AFM實驗步驟 38
4.3.10 實驗流程圖 40
五、結果與討論 41
5.1 iPS/o-DCB溶液電紡絲 41
5.2 iPS/iPP複材 42
5.2.1 iPP之研究 42
5.2.2 iPS/iPP複材之研究,法一 43
5.2.3 iPS/iPP複材之研究,法二 46
5.2.4 以AFM觀察電紡纖維與spin-coating薄膜的表面形態 48
六、結論 93
七、參考文獻 94
八、附錄 98
參考文獻 [1] R. H. Colby, T. E. Long, M. G. Mckee, G. L. Wilkers, “Correlations of solution rheology with electrospun fiber formation of linear and Branched polyesters.”, Macromolecules, 37, 5, 1760 (2004).
[2] C. H. Hsu, J. H. Ling, C. Wang, “Scaling laws in electrospinning of polystyrene solutions.”, Macromolecules, 39, 22, 7662 (2006).
[3] Y. W. Chen, H. S. Chien, C. H. Hsu, S. Y. Tsou, C. Wang “How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?-a brief discussion of solution electrospinning process.”, Journal of Polymer Research, 18, 1, 111 (2011).
[4] F. C. Chiu, J. H. Jheng, C. Wang, “Electrospun nylon-4,6 nanofibers: solution rheology and brill transition.”, Colloid and Polymer Science, 291, 10, 2337 (2013).
[5] D. H. Reneker, A. L. Yarin, “Electrospinning jets and polymer nanofibers.”, Polymer, 49, 10, 2387 (2008).
[6] D. W. Clegg, A. A. Collyer “Mechanical Properties of Reinforced Thermoplastics.”, Springers, London, 2 (1986).
[7] F. G. Krautz, “Glass fiber enhanced high-temperature performance of thermoplastics.”, Society of Plastic Engineers, 27, 74 (1971).
[8] R. H. Burton, M. J. Folkes, “Interfacial morphology in short fibre reinforced thermoplastics.”, Plastic and Rubber Processing and Applications, 3, 2, 129 (1983).
[9] Y. Duan, H. Li, L. Li, D. Wang, S. Yan, X. Zhang, “Influence of crystallization temperature on the morphologies of isotactic polypropylene single-polymer composite.”, Polymer, 45, 23, 8059(2004).
[10] L. M. Wang, C. Wang, “Transcrystallization of PTFE fiber/PP composites (I) crystallization kinetics and morphology.”, Journal of Polymer Science Part B:Polymer Physics, 34, 1, 47 (1996).
[11] G. Binning, C. Gerber, C. F. Quate, “Atomic force microscope.”, Physical Review Letters, 56, 9, 930 (1986).
[12] 黃英碩, “掃描探針顯微術的原理及應用Scanning Probe Microscopy: Principles and Applications.”, 科儀新知, 26, 4, 7 (2005).
[13] 李世元, 林世明, 林志成, “奈米量測技術-原子力顯微鏡在生物分子上之應用.”, 化學, 67, 1, 83 (2009).
[14] N. Ishihara, M. Kuramoto, T. Seimiya, M. Uoi “Crystalline syndiotactic polystyrene.”, Macromolecules, 19, 9, 2464 (1986).
[15] A. Abe, D. R. Bloch, J. Brandup, E. A. Grulke, E. H. Immergut, “Polymer handbook.”, Wiley-Interscience, New York, 829 (1999).
[16] T. Liu, J. Petermann, “Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene.”, Polymer, 42, 15, 6453 (2001).
[17] M. Tosaka, K. Yamaguchi, M. Tsuji, “Latent orientation in the skin layer of electrospun isotactic polystyrene ultrafine fibers.”, Polymer, 51, 2, 547 (2001).
[18] Y. L. Chu, C. Wang, Y. J. Wu, “Electrospun isotactic polystyrene nanofibers as a novel -nucleating agent for isotactic polypropylene.”, Polymer, 53, 23, 5404 (2012).
[19] Y. W. Cheng, T. C. Hsieh, C. Wang, “Solution-Electrospun Isotactic Polypropylene Fibers: Processing and Microstructure Development during Stepwise Annealing.”, Macromolecules, 43, 21, 9022 (2010).
[20] B. Lotz, A. Lovinger, J. C. Wittmann, “Structure and morphology of poly(propylenes): a molecular analysis.”, Polymer, 37, 22, 4979 (1996).
[21] S. Brűckner, S. V. Meille, V. Petraccone, B. Pirozzi, “Polymorphism in isotactic polypropylene.”, Progress in Polymer Science, 16, 2-3, 361 (1991).
[22] H. Bai, H. Deng, Q. Fu, F. Luo, K. Wang, T. Zhou “New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene.”, Polymer, 52, 10, 2351 (2011).
[23] B. Lotz, K. Nakamura, N. Okui, S. Shimizu, A. Thierry, S. Umemoto, “Temperature dependence of crystal growth rate for  and  forms of isotactic polypropylene.”, Polymer Journal, 40, 9, 915 (2008).
[24] J. Varga, “Supermolecular structure of isotactic polypropylene.”, Journal of Materials Science, 27, 10, 2557 (1992).
[25] A. Menyhárd, G. Molnár, J. Varga, “Comparison of different -nucleators for isotactic polypropylene, characterization by DSC and temperature-modulated DSC (TMDSC) measurements.”, Journal of Thermal Analysis and Calorimetry, 83, 3, 625 (2006).
[26] G. Edward, A. Phillips, P. W. Zhu, “Polystyrene as a versatile nucleating agent for polypropylene.”, Polymer, 51, 7, 1599 (2010).
[27] A. Menyhárd, J. Varga, “Effect of solubility and nucleating duality of N,N‘-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene.”, Macromolecules, 40, 7, 2422 (2007).
[28] F. Chen, H. Deng, Q. Fu, C. Geng, F. Luo, B. Na “New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology.”, Macromolecules, 42, 23, 9325 (2009).
[29] S. V. Fridrikh, G. C. Rutledge, J. H. Yu, “The role of elasticity in the formation of electrospun fibers.”, Polymer, 47, 13, 4789 (2006).
[30] J. M. Deitzel, K. N. Grammatikos, M. E. Helgeson, N. J. Wagner “Theory and kinematic measurements of the mechanics of stable electrospun polymer jets.”, Polymer, 49, 12, 2924 (2008).
[31] J. Doshi, D. H. Reneker, “Electrospinning process and applications of electrospun fibers.”, Journal of Electrostatics, 35, 2-3, 151 (1995).
[32] M. Fujimura, T. Hashimoto, Y. Uemura, “Application of light scattering from dielectric cylinder based upon Mie and Rayleigh-Gans-Born theories to polymer systems. I. scattering from a glass fiber.”, Polymer Journal, 10, 3, 341 (1978).
[33] M. Avrami, “Kinetics of phase change. I general theory.”, The Journal of Physical Chemistry B, 7, 12, 1103 (1939).
[34] M. Avrami, “Kinetics of phase change. II transformation‐time relations for random distribution of nuclei.”, The Journal of Physical Chemistry B, 8, 2, 212 (1940).
[35] I. Sons, J. Weliy, “Avrami analysis: three experimental limiting factors.”, Journal of Physical Science: Polymer Physics Edition, 18, 7, 1655 (1980).
[36] L. H. Sperling, “Introduction to physical polymer science.”, Wiley-Interscience, New York (1986).
[37] S. Nurkhamidah, E. M. Woo, “Phase-separation-induced single-crystal morphology in poly(L-lactic acid) blended with poly(1,4-butylene adipate) at specific composition.”, The Journal of Physical Chemistry B, 115, 45, 13127 (2011).
[38] C. R. Liu, C. Wang, “Transcrystallization of polypropylene composites: nucleating ability of fibers.”, Polymer, 40, 2, 289 (1999).
[39] F. H. Liu, W. H. Huang, C. Wang, “Electrospun-fiber induced transcrystallization of isotactic polypropylene matrix.”, Polymer, 52, 5, 1326 (2011).
[40] 吳冠輝, “以電紡絲法製備含石墨烯同排聚苯乙烯及對排聚苯乙烯纖維”, 國立成功大學碩士論文 (2014).
[41] T. Hashimoto, K. Mastsuzaka, E. Moses, A. Onuki, “String phase in phase-separating fluids under shear flow”, Physical Review Letters, 74, 1-2, 126 (1995).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw