進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2908201600484800
論文名稱(中文) 以語意模糊集合探索產品生命週期之投資組合決策
論文名稱(英文) Decision for Product Life Cycle Portfolio Using Fuzzy Linguistic Term Sets
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 104
學期 2
出版年 105
研究生(中文) 許慧正
研究生(英文) HUI-CHENG, HSU
學號 r76031040
學位類別 碩士
語文別 中文
論文頁數 59頁
口試委員 指導教授-林清河
口試委員-李昇暾
口試委員-耿伯文
中文關鍵字 生命週期矩陣  模糊集合理論  語意模糊關係 
英文關鍵字 Life cycle matrix  Fuzzy set  Fuzzy linguistic relations 
學科別分類
中文摘要 近年來,工業4.0的興起,改變原本的消費環境。物聯網、行動裝置及社群媒體已成為社會主流,資訊傳遞快速且透明化,消費者不再處於資訊模糊的時代。並且,消費者意識抬頭帶動市場生態的改變,企業之間競爭更加激烈,也使得產品生命週期不斷縮短,間接影響產業生命週期的發展。理特管理顧問公司是全球第一家諮詢顧問公司並於1970年提出生命週期矩陣,認為企業的狀態會影響策略制定的方向,而企業狀態可由競爭地位和產業成熟度來判定。
在過去的研究中,學術與業界對產業生命週期的概念已達成共識,但如何判斷產業生命週期和競爭地位至今尚未有完整的評估方式。故本研究嘗試將產業生命週期和競爭地位與模糊集理論做結合,並視為一個多屬性的決策問題,透過過去學者針對此類問題提供的研究方法套入進行量化分析。此外,本研究希望降低整體複雜度使企業在操作上更為簡單,故採用語意表示法作為資料蒐集的形式,並將語意轉為語意模糊表示法,不但增加計算結果的彈性,也達到降低企業操作難度的效果。
本研究採用相似度的計算作為分析方法,透過個案分析來說明使用語意模糊的重要性與對結果的影響,利用生命週期矩陣幫助管理者進行未來決策的制定。除此之外,本研究的量化方式可解決理特管理顧問公司提出生命週期矩陣時所提出的其中一項限制,即當前產業生命週期的判斷是有難度的。
英文摘要 With the rise of Industry 4.0 in recent years, the consumption environment has changed. IoT, mobile devices, and social media have become part of main stream society. This is a new era in which the transfer of information is fast and transparent, and consumers are no longer given blurred information. In addition, consumer awareness has led to changes in the environment of the markets, creating greater competition among businesses. This competition has caused the life cycle of a product to shrink, which has affected the development of the life cycle of an industry. Arthur D. Little, the first management consultancy firm on the globe, introduced the life cycle matrix in 1970. They believed that the state of a firm is influenced by its competitive position and industry maturity, both of which would thus affect the strategy of a firm.
In previous studies, a consensus has been established among the academics and industries on the concept of the industry life cycle. However, there has yet to be a holistic evaluation judging an industry’s life cycle and its competitive position. The current study aims at combing industry life cycle, competitive position, and fuzzy theory into a multi-attribute strategic problem and approaches the question with quantitative analysis based on previous research. In addition, in order to reduce the complexity of the theory and to increase its applicability for businesses, linguistic representations are used as the form of data collection. Utilizing semantic fuzzy representations not only increases the flexibility of the calculations but also reduces the difficulty for firms when working with these numbers.
In the current study, I adopt similarity calculations for analysis and use case studies to demonstrate the importance of using semantic fuzzy theory and its influence on the results, and then I utilize a life cycle matrix to assist managers in deciding future strategies. Furthermore, the quantitative approach presented in this study would resolve one of the limitations introduced in Arthur D. Little’s life cycle matrix, which is the difficulty of determining an industry life cycle.
論文目次 摘要...I
Abstract...II
誌謝...VI
目錄...VII
表目錄...VIII
圖目錄...X
第一章、緒論...1
1.1 研究背景與動機...1
1.2 研究目的...4
1.3 研究流程...4
第二章、文獻探討...6
2.1 產品生命週期...6
2.2 產業生命週期...8
2.3 生命週期矩陣...11
2.4 多屬性決策...13
2.5 模糊集理論...14
2.5.1 模糊語意表示法...15
2.5.2 第二型模糊集...17
第三章、研究方法...19
3.1 研究架構...19
3.2 研究模式建立...22
3.3 研究步驟...32
第四章、個案分析...33
4.1 原始資料...33
4.2 個案計算...35
4.3 個案結果分析...45
第五章、結論與建議...51
5.1 研究結論與發現...51
5.2 研究貢獻...53
5.3 研究假設與限制...54
5.4 未來研究方向...54
參考文獻...55
參考文獻 Ammar, M., Zayed, T., & Moselhi, O. (2013). Fuzzy-based life-cycle cost model for decision making under subjectivity. Journal of Construction Engineering and Management-Asce, 139(5), 556-563.
Anderson, C. R., & Zeithaml, C. P. (1984). Stage of the product life cycle, business strategy, and business performance. Academy of Management Journal, 27(1), 5-24.
Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science Series B-Application, 17(4), B141-B164.
Black, E. L. (1998). Life-cycle impacts on the incremental value-relevance of earnings and cash flow measures. Journal of Financial Statement Analysis, 4(1), 40-57.
Cao, H., & Folan, P. (2012). Product life cycle: The evolution of a paradigm and literature review from 1950–2009. Production Planning & Control, 23(8), 641-662.
Celik, E., Gul, M., Aydin, N., Gumus, A. T., & Guneri, A. F. (2015). A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowledge-Based Systems, 85, 329-341.
Chen, L. H., Ko, W. C., & Tseng, C. Y. (2013a). Fuzzy approaches for constructing house of quality in QFD and its applications: A group decision-making method. IEEE Transactions on Engineering Management, 60(1), 77-87.
Chen, S.-M., & Lee, L.-W. (2010a). Fuzzy multiple criteria hierarchical group decision-making based on interval type-2 fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(5), 1120-1128.
Chen, S. J., & Chen, S. M. (2003). A new method for handling multicriteria fuzzy decision-making problems using FN-IOWA operators. Cybernetics and Systems, 34(2), 109-137.
Chen, S. J., & Chen, S. M. (2008). Fuzzy risk analysis based on measures of similarity between interval-valued fuzzy numbers. Computers & Mathematics with Applications, 55(8), 1670-1685.
Chen, S. M., & Chiou, C. H. (2015). Multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology. IEEE Transactions on Fuzzy Systems, 23(6), 1905-1916.
Chen, S. M., & Lee, L. W. (2010b). Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Systems with Applications, 37(4), 2790-2798.
Chen, T. Y. (2013). A signed-distance-based approach to importance assessment and multi-criteria group decision analysis based on interval type-2 fuzzy set. Knowledge and Information Systems, 35(1), 193-231.
Chen, T. Y. (2015). An interval type-2 fuzzy technique for order preference by similarity to ideal solutions using a likelihood-based comparison approach for multiple criteria decision analysis. Computers & Industrial Engineering, 85, 57-72.
Chen, T. Y., Chang, C. H., & Lu, J. F. R. (2013b). The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. European Journal of Operational Research, 226(3), 615-625.
Chiclana, F., García, J. M. T., del Moral, M. J., & Herrera-Viedma, E. (2015). Analyzing consensus measures in group decision making. Procedia Computer Science, 55, 1000-1008.
Cooper, R. G. (1979). The dimensions of industrial new product success and failure. The Journal of Marketing, 43(3), 93-103.
Covin, J. G., & Slevin, D. P. (1990). New venture strategic posture, structure, and performance - An industry life-cycle analysis. Journal of Business Venturing, 5(2), 123-135.
George J, K., & Bo, Y. (2008). Fuzzy sets and fuzzy logic, theory and applications, Upper Saddle River, New Jersey: Prentice Hall PTR.
Gilan, S. S., Sebt, M. H., & Shahhosseini, V. (2012). Computing with words for hierarchical competency based selection of personnel in construction companies. Applied Soft Computing, 12(2), 860-871.
Gmelin, H., & Seuring, S. (2014). Achieving sustainable new product development by integrating product life-cycle management capabilities. International Journal of Production Economics, 154, 166-177.
Grant, R. M. (2016). Contemporary strategy analysis: Text and cases edition, Chichester, West Sussex, United Kingdom: John Wiley & Sons.
Hax, A. C., & Majluf, N. S. (1995). The strategy concept and process, Upper Saddle River, New Jersey: Prentice Hall.
Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios: A literature review. 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, January 5-8.
Herrera, F., & Martinez, L. (2000). A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems, 8(6), 746-752.
Hofer, C. W. (1975). Toward a contingency theory of business strategy. Academy of Management Journal, 18(4), 784-810.
Karnik, N. N., Mendel, J. M., & Liang, Q. L. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Engineering Management, 7(6), 643-658.
Levitt, T. (1965). Exploit the product life-cycle. Harvard Business Review, 43(6), 81-94.
Li, D. F. (2010). TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Transactions on Fuzzy Systems, 18(2), 299-311.
Li, J., Tao, F., Cheng, Y., & Zhao, L. (2015). Big data in product lifecycle management. The International Journal of Advanced Manufacturing Technology, 81(1-4), 667-684.
Liu, P. D. (2011). A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers. Expert Systems with Applications, 38(1), 1053-1060.
Liu, P. D., & Jin, F. (2012). A multi-attribute group decision-making method based on weighted geometric aggregation operators of interval-valued trapezoidal fuzzy numbers. Applied Mathematical Modelling, 36(6), 2498-2509.
Londregan, J. (1990). Entry and exit over the industry life-cycle. Rand Journal of Economics, 21(3), 446-458.
Lumpkin, G. T., & Dess, G. G. (2001). Linking two dimensions of entrepreneurial orientation to firm performance: The moderating role of environment and industry life cycle. Journal of Business Venturing, 16(5), 429-451.
Ma, R., Jia, X., Cheng, J., & Angryk, R. A. (2016). SPARQL queries on RDF with fuzzy constraints and preferences. Journal of Intelligent & Fuzzy Systems, 30(1), 183-195.
McManus, M. C., Taylor, C. M., Mohr, A., Whittaker, C., Scown, C. D., Borrion, A. L., Glithero, N. J., & Yin, Y. (2015). Challenge clusters facing LCA in environmental decision-making-what we can learn from biofuels. International Journal of Life Cycle Assessment, 20(10), 1399-1414.
Moraes, E. C., Lepikson, H. A., & Colombo, A. W. (2015). Developing interfaces based on services to the cloud manufacturing: Plug and produce. In M. Gen, K. J. Kim, X. Huang, & Y. Hiroshi (Eds.), Industrial Engineering, Management Science and Applications 2015 (pp. 821-831). Berlin Heidelberg: Springer.
Mueller, D. C. (1972). A life cycle theory of the firm. The Journal of Industrial Economics, 20(3), 199-219.
Qualls, W., Olshavsky, R. W., & Michaels, R. E. (1981). Shortening of the PLC: An empirical test. Journal of Marketing, 45(4), 76-80.
Restuccia, M., de Brentani, U., Legoux, R., & Ouellet, J. F. (2016). Product life-cycle management and distributor contribution to new product development. Journal of Product Innovation Management, 33(1), 69-89.
Rumelt, R. P. (2011). Good strategy bad strategy, New York: Crown Business.
Sabol, A., Šander, M., & Fuckan, D. (2013). The concept of industry life cycle and development of business strategies. Active Citizenship by Knowledge Management & Innovation: Proceedings of the Management, Knowledge and Learning International Conference Zadar, Croatia, June 19-21.
Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Neumaier, P., & Jozinović, P. (2015). Industry 4.0-potentials for creating smart products: Empirical research results. BIS 2015: 18th International Conference on Business Information Systems, Poznań, Poland, June 24-26.
Sepúlveda, R., Castillo, O., Melin, P., Rodríguez-Díaz, A., & Montiel, O. (2007). Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Information Sciences, 177(10), 2023-2048.
Sirkis, R. L., Race, S. M., & Little, A. D. (1981). Principles of strategic planning for the food-service firm how to select a strategy based on your competitive position in the industry. Cornell Hotel and Restaurant Administration Quarterly, 22(1), 35-41.
Stark, J. (2015). Product lifecycle management (Vol. 1), England, United Kingdom: Springer International Publishing.
Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP, 40, 536-541.
Wang, X. J., Chan, H. K., & Li, D. (2015). A case study of an integrated fuzzy methodology for green product development. European Journal of Operational Research, 241(1), 212-223.
Wong, H. K., & Ellis, P. D. (2007). Is market orientation affected by the product life cycle? Journal of World Business, 42(2), 145-156.
Wu, D., & Mendel, J. M. (2008). A vector similarity measure for linguistic approximation: Interval type-2 and type-1 fuzzy sets. Information Sciences, 178(2), 381-402.
Xu, Z. Y., Shang, S. C., Qian, W. B., & Shu, W. H. (2010). A method for fuzzy risk analysis based on the new similarity of trapezoidal fuzzy numbers. Expert Systems with Applications, 37(3), 1920-1927.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8(3), 199-249.
Zhang, Z. M., & Zhang, S. H. (2013). A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Applied Mathematical Modelling, 37(7), 4948-4971.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw