進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2908201410560500
論文名稱(中文) 臺灣西南海域永安及好景海脊甲烷冷泉沉積物中自生性磁黃鐵礦之電子顯微研究
論文名稱(英文) Electron microscopic study of authigenic pyrrhotite in methane-seep sediments from Yung-An and Good Weather ridge areas offshore southwestern Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 陳朝煒
研究生(英文) Chao-Wei Chen
學號 l46004018
學位類別 碩士
語文別 中文
論文頁數 120頁
口試委員 指導教授-江威德
口試委員-蕭炎宏
口試委員-楊懷仁
中文關鍵字 磁黃鐵礦  冷泉  自生性  電子顯微鏡 
英文關鍵字 pyrrhotite  cold seep  authigenic  electron microscopy 
學科別分類
中文摘要 海洋自生性硫化鐵礦物為探索早成岩作用氧化還原環境之重要指標,但文獻紀錄顯示吾人對於自生性磁黃鐵礦的成分、結構及岩象組織之認知有限。本研究以礦物學角度研究西南海域永安海脊MD178-10-3276及好景海脊MD178-10-3292兩岩心所見自生性磁黃鐵礦之特性,使用掃瞄式電子顯微鏡、能量分散光譜儀與電子背向散射繞射儀,解析磁黃鐵礦與其它硫化鐵礦物在沉積物中之組織及成份變化,並以穿透式電子顯微鏡鑑定磁黃鐵礦之結構類型,藉以瞭解早成岩作用磁黃鐵礦與其他硫化鐵礦物間的生成關係,並用以探討磁黃鐵礦之生成環境與意義。
本研究分析結果顯示MD178-10-3276岩心之0489-0491、1141-1143及1200-1204 cmbsf三個深度標本中之硫化鐵結核粒由黃鐵礦、次微米磁黃鐵礦針板狀晶簇、氧化鐵物質及少量矽酸鹽組成。最淺處結核粒礦物生成順序為早期蔓生黃鐵礦、磁黃鐵礦和後期自形或半自形黃鐵礦,後期黃鐵礦化反映現今硫酸鹽─甲烷界面(~2.5 mbsf)之強烈硫酸鹽還原作用;較深處兩標本結核粒中之生成順序為不同程度之蔓生黃鐵礦、磁黃鐵礦及氧化鐵物質,而至後期磁黃鐵礦生長於結核粒孔隙及邊緣。整體而言,氧化鐵物質比例隨深度增加而升高,自生磁黃鐵礦之鐵硫莫耳比平均為0.858至0.876。MD178-10-3292岩心的硫化鐵礦物包含碎屑源及自生性磁黃鐵礦,以及自生性黃鐵礦、四方硫鐵礦和硫複鐵礦。其中碎屑源磁黃鐵礦之Fe/S成分平均為0.856至0.862,自生性磁黃鐵礦之Fe/S成分平均為0.862至0.876。磁黃鐵礦結核粒針板狀晶粒可達數微米厚,數十微米寬,可與酸可萃取硫化物集結成結核粒或生成於結核粒之孔隙或邊緣,其分布並未侷限於硫酸鹽─甲烷界面(~4.5 mbsf)或其他特定深度。穿透式電子顯微鏡分析顯示此二岩心硫化鐵結核粒中之自生磁黃鐵礦主要具有3C(nA)及4C兩種層狀結構,且顯現兩者互相不規則成層交錯之特徵,可能代表低溫過飽和變動化學環境沉澱之特徵。
磁黃鐵礦與四方硫鐵礦具有相似之pH-Eh假穩定範圍,但生成產狀暗示磁黃鐵礦之形成需有四方硫鐵礦或單硫化鐵前身,且多伴隨生成菱鐵礦,可能生成於硫酸鹽—甲烷界面以下之深度。磁黃鐵礦與其他硫化鐵礦物之複雜交替生長關係顯示其為非穩定態成岩作用之產物,符合具有變動性甲烷通量之冷泉沉積物的特有現象。
英文摘要 Authigenesis and mineralogical properties of pyrrhotite in cored sediments from Yung-An Ridge (MD178-10-3276) and Good Weather Ridge (MD178-10-3292) were investigated utilizing electron microscopy. Iron-sulfide nodules in sediment core MD178-10-3276 are composed of pyrite, iron oxides and clusters of acicular laths of pyrrhotite crystals sub-micrometers in thickness, with minor detrital silicates. The MD178-10-3292 pyrrhotite occurs as platy crystals up to several micrometers in thickness and tens of micrometers in width formed in pore space or peripheral regions of acid-volatile-sulfide nodules below or above the sulfate-methane transition zone. The pyrrhotites from the two sediment cores have compositions approximating Fe7S8. Transmission electron microscopic analysis indicated that the pyrrhotite crystals have a 3C (nA) or 4C structure, mostly with some degrees of disordered interstratification of these two types of structures. Such metastable disordered structures may be characteristic of pyrrhotite precipitation under high degrees of supersaturation in marine environments with dramatic chemical variations. Both pyrrhotite and mackninawite can form metastably in neutral to alkaline solution under reducing conditions at low temperatures, but field evidence implied that formation of pyrrhotite needs the presence of pre-existing mackinawite or other iron monosulfides below the sulfate-methane transition zone. Complex alternating growths among pyrrhotite and other iron sulfides signify a record of non-steady state diagenesis governed by rapidly changing redox conditions in pore fluids, consistent with time-varying methane flux featuring in most cold-seep sediments.
論文目次 目錄
摘要 I
Abstract II
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論1
1.1.前言1
1.2.研究目的4
1.3.磁黃鐵礦礦物學特徵6
第二章 地質背景與岩心採集11
2.1.地質背景11
2.2.岩心採集與描述12
2.3.先前礦物學分析結果18
2.3.1.黃鐵礦18
2.3.2.酸可萃取硫化物18
2.3.3.磁黃鐵礦19
第三章 研究方法21
3.1.實驗流程21
3.2.岩心取樣與薄片製作22
3.3.掃描式電子顯微鏡25
3.3.1.X光能量分散光譜儀之化學分析25
3.3.2.電子背向散射繞射25
3.4.穿透式電子顯微鏡樣本製作26
3.4.1.樣本包埋26
3.4.2.玻璃刀製作27
3.4.3.超薄切片28
3.5.穿透式電子顯微鏡分析31
3.6.地球化學模擬計算38
3.6.1.Eh-pH相圖之計算說明38
3.6.2.Eh-pH相圖之條件設定參數39
第四章 結果41
4.1.MD178-10-3292岩心捕集器硫化鐵結核粒之礦物生長關係和礦物化學41
4.2.MD178-10-3276岩心硫化鐵結核粒之礦物生長關係和礦物化學47
4.2.1.MD178-10-3276 0489-0491 cmbsf硫化鐵結核粒47
4.2.2.MD178-10-3276 1141-1143 cmbsf硫化鐵結核粒48
4.2.3.MD178-10-3276 1200-1204 cmbsf硫化鐵結核粒48
4.2.4.MD178-10-3276岩心三深度硫化鐵結核粒綜合分析結果49
4.3.TEM超微組構和磁黃鐵礦結構分析64
4.3.1.MD178-10-3276岩心硫化鐵結核粒64
4.3.2.MD178-10-3292岩心捕集器硫化鐵結核粒68
第五章 討論89
5.1.磁黃鐵礦岩象組織及來源關係89
5.2.磁黃鐵礦形成環境及條件91
5.3.自生性磁黃鐵礦的成分與結構特徵92
5.4.磁黃鐵礦及硫化鐵於海洋沉積物中的地質地化演化模型95
5.5.永安及好景海脊兩岩心之成岩環境變化101
5.5.1.好景海脊MD178-10-3292岩心之成岩環境變化101
5.5.2.永安海脊MD178-10-3276岩心之成岩環境變化102
第六章 結論103
中文參考文獻104
英文參考文獻106
附錄114

圖目錄
圖1–1、海洋沉積物之地球化學剖面示意圖5
圖1–2、黑海沉積物岩心剖面5
圖1–3、紅砷鎳礦結構8
圖1–4、單斜4C磁黃鐵礦結構8
圖1–5、FeS亞晶胞、隕硫礦(troilite)2C及磁黃鐵礦3C、4C、5 C與6C結構圖9
圖1–6、Fe-S成分─溫度相圖10
圖2–1、臺灣地理地質構造14
圖2–2、臺灣西南海域增積岩體構造單元及本研究岩心採樣位置圖15
圖2–3、岩心MD178-10-3276之地質地化參數垂直剖面16
圖2–4、岩心MD178-10-3292之地質地化參數垂直剖面17
圖3–1、本研究之實驗流程圖21
圖3–2、岩心MD178-10-3292岩心捕集器(core catcher)之硫化鐵結核粒23
圖3–3、岩心MD178-10-3276 489-491、1141-1142及1200-1204 cmbsf硫化鐵結核粒23
圖3–4、12-mount試片樣本24
圖3–5、玻璃刀製作示意圖27
圖3–6、超薄切片示意圖29
圖3–7、4C磁黃鐵礦結構及電子繞射示意圖33
圖3–8、nC、nA及mC類型磁黃鐵礦之單晶繞射圖34
圖3–9、六方晶系單位紅砷鎳礦、2C隕硫鐵、3C磁黃鐵礦、4C磁黃鐵礦、5C磁黃鐵礦及6C磁黃鐵礦結構之a─b底面投影圖34
圖3–10、六方晶系單位紅砷鎳礦、2C隕硫鐵及3C磁黃鐵礦電子繞射圖35
圖3–11、4C磁黃鐵礦、5C磁黃鐵礦及6C磁黃鐵礦電子繞射圖36
圖4–1、MD178-10-3292岩心捕集器硫化鐵結核粒43
圖4–2、MD178-10-3292岩心捕集器硫化鐵結核粒44
圖4–3、四方硫鐵礦結構及電子背向散射繞射圖之模擬和鑑定45
圖4–4、樣本MD3276 0490-C之硫化鐵結核粒BEI影像50
圖4–5、樣本MD3276 0490-C之硫化鐵結核粒BEI影像51
圖4–6、樣本MD3276 0490-C之硫化鐵結核粒BEI影像52
圖4–7、樣本MD3276 0490-C之硫化鐵結核粒BEI影像53
圖4–8、樣本MD3276 0490-F之硫化鐵結核粒BEI影像54
圖4–9、磁黃鐵礦結構及電子背向散射繞射圖之模擬和鑑定55
圖4–10、樣本MD3276 1142-C之硫化鐵結核粒BEI影像56
圖4–11、樣本MD3276 1142-C之硫化鐵結核粒BEI影像57
圖4–12、樣本MD3276 1142-C之硫化鐵結核粒BEI影像58
圖4–13、MD178-10-3276 1141-1143 cmbsf之硫化鐵結核粒BEI影像59
圖4–14、樣本MD3276 1202-B之硫化鐵結核粒SEM-BEI影像60
圖4–15、樣本MD178-10-3276 1200-1204 cmbsf之硫化鐵結核粒BEI影像61
圖4–16、MD178-10-3276硫化鐵結核粒之磁黃鐵礦Fe/S分析統計圖63
圖4–17、MD3276 0490-C-TEM-01之TEM分析結果71
圖4–18、MD3276 0490-C-TEM-02之TEM分析結果72
圖4–19、MD3276 0490-C-TEM-03之TEM分析結果74
圖4–20、MD3276 0490-C-TEM-04之TEM分析結果76
圖4–21、MD3276 0490-C-TEM-04之HRTEM分析結果78
圖4–22、MD3276 0490-C-TEM-04之HRTEM分析結果79
圖4–23、MD3276 1142-C-TEM-01之TEM分析結果80
圖4–24、MD3276 1202-B-TEM-01之TEM分析結果81
圖4–25、MD3276 1202-B-TEM-02之TEM分析結果83
圖4–26、MD3292 CC-L-TEM-01之TEM分析結果85
圖4–27、MD3292 CC-B硫化鐵結核粒之TEM分析結果86
圖4–28、MD3292 CC-L硫化鐵結核粒之TEM分析結果87
圖4–29、MD3292 CC-B硫化鐵結核粒之TEM分析結果88
圖5–1、磁黃鐵礦成分結果投影在Fe-S成分─溫度相圖93
圖5–2、3C及4C磁黃鐵礦結構圖94
圖5–3、Fe-S-seawater之Eh-pH相圖97
圖5–4、Fe-S-seawater之Eh-pH相圖98
圖5–5、Fe-S-seawater之Eh-pH相圖99
圖5–6、硫化鐵的地質地化演化模型100

表目錄
表1–1、Fe-S系統之固態物質4
表2–1、岩心MD178-10-3276和MD178-10-3292採樣位置及相關資訊13
表2–2、MD178-10-3292岩心沉積物薄片之黃鐵礦、AVS及磁黃鐵礦分布20
表3–1、硫化鐵結核粒樣本分析項目列表24
表3–2、超薄切片常見現象、問題及處理方式30
表3–3、整理磁黃鐵礦結構類型礦物之晶胞參數及參考文獻37
表3–4、礦物相之熱力學基本參數統整表40
表4–1、MD178-10-3292岩心沉積物薄片及MD178-10-3292岩心捕集器硫化鐵結核粒之磁黃鐵礦SEM-EDS成分分析46
表4–2、MD178-10-3276硫化鐵結核粒之磁黃鐵礦SEM-EDS成分分析62
表4–3、MD178-10-3276及MD178-10-3292硫化鐵結核粒之穿透式電子顯微鏡選區繞射(TEM-SAED)分析結果統整70
參考文獻 江威德(2007)臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(4/4):沉積物之黏土礦物分析。行政院經濟部中央地質調查所報告第96-27-C號,169頁。
江威德(2010)臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(3/4)。臺灣西南海域天然氣水合物探勘熱區之黏土礦物與自生礦物研究。行政院經濟部中央地質調查所報告第99-26-D號,93頁。
江威德(2011)臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(4/4)。臺灣西南海域天然氣水合物探勘熱區之黏土礦物與自生礦物研究。行政院經濟部中央地質調查所報告第100-25-D號,102頁。
江威德(2012)天然氣水合物資源潛能調查:震測、地熱及地球化學調查研究(1/4)。臺灣西南海域沉積物自生礦物之電子顯微分析。行政院經濟部中央地質調查所報告第101-22-G號,91頁。
林殿順(2011)臺灣西南海域新興能源─天然氣水合物資源調查與評估:震測及地熱調查(4/4)。含天然氣水合物地層的構造與沉積特徵研究。行政院經濟部中央地質調查所報告第100-24-F號,229頁。
林曉武(2010)臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(3/4)。臺灣西南海域自生性碳酸鹽及硫物種之變化與天然氣水合物賦存之關係。行政院經濟部中央地質調查所報告第99-26-C號,87頁。
林曉武(2011)臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(4/4)。臺灣西南海域自生性碳酸鹽及硫物種之變化與天然氣水合物賦存之關係。行政院經濟部中央地質調查所報告第100-25-C號,70頁。
林哲銓(2012)臺灣西南海域天然氣水合物地質控制因素與資源量評估。國立中央大學地球物理研究所博士論文,202 頁。
洪崇勝(2011)臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(4/4)。臺灣西南海域沉積物之古地磁定年及磁學性質研究。行政院經濟部中央地質調查所報告第100-25-E號,72頁。
楊燦堯(2010)臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(3/4)。臺灣西南海域海水與沉積物之氣體化學組成。行政院經濟部中央地質調查所報告第99-26-A號,56頁。
Anderko, A., and Shuler, P.J. (1997) A computational approach to predicting the formation of iron sulfide species using stability diagrams. Computers & Geosciences, 23(6), 647-658.
Arnold, R.G. (1966) Mixtures of hexagonal and monoclinic pyrrhotite and the measurement of the metal content of pyrrhotite by x-ray diffraction. American Mineralogist, 51(7), 1221-1227.
Arnold, R.G., and Reichen, L.E. (1962) Measurement of the metal content of naturally occurring, metal-deficient, hexagonal pyrrhotite by an x-ray spacing method. American Mineralogist, 47(1-2), 105-111.
Bennett, C.E.G., Graham, J., and Thornber, M.R. (1972) New observations on natural pyrrhotites: Part I: Mineragraphic techniques. American Mineralogist, 57(3-4), 445-462.
Benning, L.G., Wilkin, R.T., and Barnes, H.L. (2000) Reaction pathways in the Fe–S system below 100°C. Chemical Geology, 167(1-2), 25-51.
Berner, R.A. (1967) Thermodynamic Stability of Sedimentary Iron Sulfides. American Journal of Science, 265(9), 773-785.
Berner, R.A. (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press.
Berner, R.A. (1984) Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48(4), 605-615.
Bertaut, E.F. (1953) Contribution à l'étude des structures lacunaires: la pyrrhotine. Acta Crystallographica, 6(6), 557-561.
Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B.B., Witte, U., and Pfannkuche, O. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626.
Bozzola, J.J., and Russell, L.D. (1999) Electron Microscopy : Principles and Techniques for Biologists. Jones and Bartlett, Sudbury, Mass.
Chen, S.C., Hsu, S.K., Tsai, C.H., Ku, C.Y., Yeh, Y.C., and Wang, Y. (2010) Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Marine Geophysical Researches, 31(1-2), 133-147.
Chuang, P.C., Dale, A.W., Wallmann, K., Haeckel, M., Yang, T.F., Chen, N.C., Chen, H.C., Chen, H.W., Lin, S., Sun, C.H., You, C.F., Horng, C.S., Wang, Y., and Chung, S.H. (2013) Relating sulfate and methane dynamics to geology: Accretionary prism offshore SW Taiwan. Geochemistry, Geophysics, Geosystems, 14(7), 2523-2545.
Chuang, P.C., Yang, T.F., Hong, W.L., Lin, S., Sun, C.H., Lin, A.T.S., Chen, J.C., Wang, Y., and Chung, S.H. (2010) Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10(4), 497-510.
de Villiers, J.P.R., and Liles, D.C. (2010) The crystal-structure and vacancy distribution in 6C pyrrhotite. American Mineralogist, 95(1), 148-152.
de Villiers, J.P.R., Liles, D.C., and Becker, M. (2009) The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry, and vacancy distribution. American Mineralogist, 94(10), 1405-1410.
Csákberényi-Malasics, D., Rodriguez-Blanco, J.D., Kis, V.K., Rečnik, A., Benning, L.G., and Pósfai, M. (2012) Structural properties and transformations of precipitated FeS. Chemical Geology, 294-295, 249-258.
Delany, J.M., and Lundeen, S.R. (1990) The LLNL thermocheical database. Lawrence Livermore National Laboratory Report UCRL-21658, Lawrence Livermore National Laboratory.
Evans, H.T., Jr. (1970) Lunar troilite: crystallography. Science, 167(3918), 621-623.
Faure, G. (1998) Principles and applications of geochemistry: a comprehensive textbook for geology students. Prentice Hall.
Francis, C.A., and Craig, J.R. (1976) Pyrrhotite: The nA (or 2A, 3C) superstructure reviewed American Mineralogist, 61(1-2), 21-25.
Garrison, T., 1996: Oceanography: An Invitation to Marine Science. Wadsworth Publish co., 582pp.
Harries, D., and Langenhorst, F. (2013) The nanoscale mineralogy of Fe,Ni sulfides in pristine and metamorphosed CM and CM/CI-like chondrites: Tapping a petrogenetic record. Meteoritics & Planetary Science, 48(5), 879-903.
Harries, D., Pollok, K., and Langenhorst, F. (2011) Translation interface modulation in NC-pyrrhotites: Direct imaging by TEM and a model toward understanding partially disordered structural states. American Mineralogist, 96(5-6), 716-731.
Horng, C.S., Huh, C.A., Chen, K.H., Lin, C.H., Shea, K.S., and Hsiung, K.H. (2012) Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry Geophysics Geosystems, 13.
Horng, C.S., and Roberts, A.P. (2006) Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum. Earth and Planetary Science Letters, 241(3-4), 750-762.
Horng, C.S., Torii, M., Shea, K.S., and Kao, S.J. (1998) Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth and Planetary Science Letters, 164(3-4), 467-481.
Hsu, S.K., Wang, S.Y., Liao, Y.C., Yang, T.F., Jan, S., Lin, J.Y., and Chen, S.C. (2013) Tide-modulated gas emissions and tremors off SW Taiwan. Earth and Planetary Science Letters, 369-370, 98-107.
Huang, K.C., Chen, C.W., Horng, C.S., Wang, Y., Huang, A.L., Jiang, W.T. (2014) Formation of micrometer-sized stoichiometric mackinawite in cold-seep sediments offshore southwestern Taiwan. The 21st General Meeting of the International Mineralogical Association;,Sandton Convention Centre, Johannesburg, Gauteng Province, South Africa.
Huang, K.C., Jiang, W.T. (2013) Replacement of authigenic and detrital pyrrhotites by marcasite and pyrite in cold-seep sediments offshore SW Taiwan, The 23th Annual V. M. Goldschmidt Conference (Goldschmidt 2013), Mineralogical Magazine, 77(5) p. 1338.
Huang, C.Y., Wu, W.Y., Chang, C.P., Tsao, S., Yuan, P.B., Lin, C.W., and Xia, K.Y. (1997) Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1-2), 31-51.
Huang, C.Y., Yuan, P.B., Lin, C.W., Wang, T.K., and Chang, C.P. (2000) Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2), 1-21.
Jørgensen, B.B. (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature, 296(5858), 643-645.
Jørgensen, B.B., Böttcher, M.E., Lüschen, H., Neretin, L.N., and Volkov, I.I. (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta, 68(9), 2095-2118.
Jørgensen, B.B., and Kasten, S. (2006) Sulfur cycling and methane oxidation. In H. Schulz, and M. Zabel, Eds. Marine Geochemistry, p. 271-309. Springer Berlin Heidelberg.
Keller-Besrest, F., Collin, G., and Comès, R. (1982) Structure and Planar Faults in the Defective NiAs-Type Compound 3C Fe7S8. Acta Crystallographica Section B, 39, 296-303.
Kissin, S.A., and Scott, S.D. (1982) Phase relations involving pyrrhotite below 350°C. Economic Geology, 77(7), 1739-1754.
Kobayashi, K., and Nomura, M. (1972) Iron sulfides in the sediment cores from the Sea of Japan and their geophysical implications. Earth and Planetary Science Letters, 16(2), 200-208.
Kontny, A., H., D.W., Sharp, T.G., and Pósfai, M. (2000) Mineralogy and magnetic behavior of pyrrhotite from a 260°C section at the KTB drilling site, Germany. American Mineralogist, 85(10), 1416-1427.
Larrasoaña, J.C., Roberts, A.P., Musgrave, R.J., Gràcia, E., Piñero, E., Vega, M., and Martínez-Ruiz, F. (2007) Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth and Planetary Science Letters, 261(3-4), 350-366.
Lennie, A.R., Redfern, S.A.T., Champness, P.E., Stoddart, C.P., Schofield, P.F., and Vaughan, D.J. (1997) Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study. American Mineralogist, 82(3-4), 302-309.
Lennie, A.R., Redfern, S.A.T., Schofield, P.F., and Vaughan, D.J. (1995) Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineralogical Magazine, 59(397), 677-683.
Lianxing, G., and Vokes, F.M. (1996) Intergrowth of hexagonal and monoclinic pyrrhotite in some sulfide ores from Norway. Mineralogical Magazine, 60(2), 303-316.
Lin, A.T., Liu, C.S., Lin, C.C., Schnurle, P., Chen, G.Y., Liao, W.Z., Teng, L.S., Chuang, H.J., and Wu, M.S. (2008) Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology, 255(3-4), 186-203.
Lin, A.T., Yao, B., Hsu, S.K., Liu, C.S., and Huang, C.Y. (2009a) Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1-2), 28-42.
Lin, C.C., Lin, A.T., A., Liu, C.S., Chen, G.Y., Liao, W.Z., and Schnurle, P. (2009b) Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Marine and Petroleum Geology, 26(7), 1118-1131.
Lin, S., Hsieh, W.C., Lim, Y.C., Yang, T.F., Liu, C.S., and Wang, Y. (2006) Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments. Terrestrial Atmospheric and Oceanic Sciences, 17(4), 883-902.
Liu, C.S., Huang, I.L., and Teng, L.S. (1997) Structural features off southwestern Taiwan. Marine Geology, 137, 305-319.
Milliken, K.L. (2003) 7.07 - Late Diagenesis and Mass Transfer in Sandstone–Shale Sequences. In H.D. Holland, and K.K. Turekian, Eds. Treatise on Geochemistry, p. 159-190. Pergamon, Oxford.
Morimoto, N., Gyobu, A., Mukaiyama, H., and Izawa, E. (1975a) Crystallography and Stability of Pyrrhotite. Economic Geology, 70, 824-833.
Morimoto, N., Gyobu, A., Tsukuma, K., and Koto, K. (1975b) Superstructure and nonstoichiometry of intermediate pyrrhotite. American Mineralogist, 60(3-4), 240-248.
Morse, J.W., and Rickard, D. (2004) Chemical dynamics of sedimentary acid volatile sulfide. Environmental Science & Technology, 38(7), 131A-136A.
Murowchick, J.B., and Barnes, H.L. (1986) Marcasite Precipitation from Hydrothermal Solutions. Geochimica et Cosmochimica Acta, 50(12), 2615-2629.
Nakano, A., Tokonami, M., and Morimoto, N. (1979) Refinement of 3C Pyrrhotite, Fe7S8. Acta Crystallographica Section B, 35, 722-724.
Nakazawa, H., and Morimoto, N. (1971) Phase relations and superstructures of pyrrhotite, Fe1−xS. Materials Research Bulletin, 6(5), 345-357.
Nakazawa, H., Morimoto, N., and Watanabe, E. (1975) Direct observation of metal vacancies by high-resolution electron microscopy. Part I: 4C type pyrrhotite (Fe7S8). American Mineralogist, 60(5-6), 359-366.
Neal, A.L., Techkarnjanaruk, S., Dohnalkova, A., McCready, D., Peyton, B.M., and Geesey, G.G. (2001) Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta, 65(2), 223-235.
Neretin, L.N., Bottcher, M.E., Jørgensen, B.B., Volkov, I.I., Luschen, H., and Hilgenfeldt, K. (2004) Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 68(9), 2081-2093.
Niewöhner, C., Hensen, C., Kasten, S., Zabel, M., and Schulz, H.D. (1998) Deep Sulfate Reduction Completely Mediated by Anaerobic Methane Oxidation in Sediments of the Upwelling Area off Namibia. Geochimica et Cosmochimica Acta, 62(3), 455-464.
Pósfai, M., Buseck, P.R., Bazylinski, D.A., and Frankel, R.B. (1998a) Iron sulfides from magnetotactic bacteria: Structure, composition, and phase transitions. American Mineralogist, 83(11-12), 1469-1481.
Pósfai, M., Buseck, P.R., Bazylinski, D.A., and Frankel, R.B. (1998b) Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science, 280(5365), 880-883.
Pósfai, M., Cziner, K., Marton, E., Marton, P., Buseck, P.R., Frankel, R.B., and Bazylinski, D.A. (2001) Crystal-size distributions and possible biogenic origin of Fe sulfides. European Journal of Mineralogy, 13(4), 691-703.
Pósfai, M., Sharp, T.G., and Kontny, A. (2000) Pyrrhotite varieties from the 9.1 km deep borehole of the KTB project. American Mineralogist, 85(10), 1406-1415.
Powell, A., Vaqueiro, P., Knight, K., Chapon, L., and Sánchez, R. (2004) Structure and magnetism in synthetic pyrrhotite Fe7S8: A powder neutron-diffraction study. Physical Review B, 70(1), 014415.
Raiswell, R. (1982) Pyrite texture, isotopic composition and the availability of iron. American Journal of Science, 282, 1244-1263.
Reed, D.L., Lundberg, N., Liu, C.S., and Kuo, B.Y. (1992) Structural relations along the margins of the offshore Taiwan accretionary wedge; implications for accretionary growth and plate kinematics. Acta Geologica Taiwanica, 30, 105-122.
Rickard, D. (1995) Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms. Geochimica et Cosmochimica Acta, 59(21), 4367-4379.
Rickard, D., Butler, I.B., and Oldroyd, A. (2001) A novel iron sulphide mineral switch and its implications for Earth and planetary science. Earth and Planetary Science Letters, 189(1-2), 85-91.
Rickard, D., and Luther, G.W., III. (1997) Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism. Geochimica et Cosmochimica Acta, 61(1), 135-147.
Rickard, D., and Luther, G.W., III. (2007) Chemistry of iron sulfides. Chemical Reviews, 107(2), 514-62.
Rickard, D., and Morse, J.W. (2005) Acid volatile sulfide (AVS). Marine Chemistry, 97(3-4), 141-197.
Roberts, A.P., Chang, L., Rowan, C.J., Horng, C.-S., and Florindo, F. (2011) Magnetic properties of sedimentary greigite (Fe3S4): An update. Reviews of Geophysics, 49(1), RG1002.
Roberts, A.P., Florindo, F., Larrasoaña, J.C., O'Regan, M.A., and Zhao, X. (2010) Complex polarity pattern at the former Plio–Pleistocene global stratotype section at Vrica (Italy): Remagnetization by magnetic iron sulphides. Earth and Planetary Science Letters, 292(1-2), 98-111.
Rowan, C.J., Roberts, A.P., and Broadbent, T. (2009) Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth and Planetary Science Letters, 277(1-2), 223-235.
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675.
Schoonen, M.A.A. (2004) Mechanisms of sedimentary pyrite formation. Geological Society of America Special Papers, 379, 117-134.
Schoonen, M.A.A., and Barnes, H.L. (1991) Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes. Geochimica et Cosmochimica Acta, 55(12), 3491-3504.
Skinner, B.J., Erd, R.C., and Grimaldi, F.S. (1964) Greigite, the thio-spinel of iron; a new mineral. American Mineralogist, 49, 543-555.
Taylor, P. (1980) The Stereochemistry of Iron Sulfides - a Structural Rationale for the Crystallization of Some Metastable Phases from Aqueous-Solution. American Mineralogist, 65(9-10), 1026-1030.
Sweeney, R.E., and Kaplan, I.R. (1973) Pyrite framboid formation: laboratory synthesis and marine sediments. Economic Geology, 68(5), 618-634.
Taylor, P., Rummery, T.E., and Owen, D.G. (1979) Reactions of iron monosulfide solids with aqueous hydrogen sulfide up to 160°C. Journal of Inorganic and Nuclear Chemistry, 41(12), 1683-1687.
Tokonami, M., Nishiguc.K, and Morimoto, N. (1972) Crystal structure of a monoclinic pyrrhotite (Fe7S8). American Mineralogist, 57(7-8), 1066-1080.
van Dongen, B.E., Roberts, A.P., Schouten, S., Jiang, W.T., Florindo, F., and Pancost, R.D. (2007) Formation of iron sulfide nodules during anaerobic oxidation of methane. Geochimica et Cosmochimica Acta, 71(21), 5155-5167.
Wang, H., and Salveson, I. (2005) A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1−xS (0 ≤ x ≤ 0.125): polymorphs, phase relations and transitions, electronic and magnetic structures. Phase Transitions, 78(7-8), 547-567.
Wang, Q., and Morse, J.W. (1996) Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology. Marine Chemistry, 52(2), 99-121.
Weaver, R., Roberts, A.P., and Barker, A.J. (2002) A late diagenetic (syn-folding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphide-bearing sediments. Earth and Planetary Science Letters, 200(3-4), 371-386.
Wilkin, R.T., and Barnes, H.L. (1996) Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 60(21), 4167-4179.
Wilkin, R.T., and Barnes, H.L. (1997a) Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2), 323-339.
Wilkin, R.T., and Barnes, H.L. (1997b) Pyrite formation in an anoxic estuarine basin. American Journal of Science, 297(6), 620-650.
Wilkin, R.T., Barnes, H.L., and Brantley, S.L. (1996) The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20), 3897-3912.
Xu, F., and Navrotsky, A. (2010) Enthalpies of formation of pyrrhotite Fe1-0.125xS (0 ≤ x ≤ 1) solid solutions. American Mineralogist, 95(5-6), 717-723.
Yamamoto, A., and Nakazawa, H. (1982) Modulated structure of the NC-type (N= 5.5) pyrrhotite, Fe1−xS. Acta Crystallographica Section A, 38(1), 79-86.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw