進階搜尋


 
系統識別號 U0026-2908201317040600
論文名稱(中文) 天然壩快速安全評估方法之研究
論文名稱(英文) Study on Rapid Safety Assessment of Landslide-Dam
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 臧運忠
研究生(英文) Yun-Chung Tsang
電子信箱 tyc@dprc.ncku.edu.tw
學號 n88941046
學位類別 博士
語文別 中文
論文頁數 201頁
口試委員 指導教授-謝正倫
口試委員-陳禮仁
口試委員-曾志民
口試委員-羅偉誠
口試委員-陳晉琪
中文關鍵字 天然壩  滲流臨界安定坡度  安全性評估 
英文關鍵字 Natural Dam  The Critical Stable Seepage Slope  Safety Assessment 
學科別分類
中文摘要 天然壩為山崩、地滑、土石流與雪崩等因素所形成,其組成材料多為鬆散、非均質且剪力強度較低之崩積土石,若壩體材料強度無法抵抗上游來水作用力,則可能造成壩體破壞,使下游洪峰流量驟然增加,並威脅河道下游兩側居民生命財產之安危(郭,2011)。依據文獻統計,85%之堰塞湖其存在時間不超過一年,41%於形成後一週內即便潰決(Costa and Schuster, 1988),由於天然壩從形成至破壞之存續時間可能極短,應變時間有限,各級防救災單位須於最短時間內完成評估及處理。因此,十分需要有一簡單且快速的方法協助完成資料調查及天然壩安全性評估。
在天然壩資料調查上,本研究考量天然壩幾何形狀為應變初期需迅速掌握之重要評估資訊,然因堰塞湖多形成於交通不便之偏遠山區,往往無法於災後迅速獲取天然壩基本資料。因此,本研究透過世界各地堰塞湖案例之資料蒐集,利用統計方法建立天然壩幾何形狀快速評估方法,可利用遙測影像進行崩塌區範圍判釋,依據崩塌面積快速完成天然壩幾何形狀推估,本方法可應用於位處偏遠、人員無法抵達之堰塞湖案例,於災後第一時間提供天然壩基本資料供防災單位參考。
另針對壩體材料力學參數不易量化,使得天然壩之穩定性極難評估之問題,本研究應用土壤力學理論及經驗公式建立推求天然壩材料力學參數之快速檢定方法,利用現地表面粒徑分析及試坑取樣,配合室內土壤試驗即可快速推求天然壩材料力學參數,對於現地試驗或鑽探作業不易實施之地點,本方法可作為天然壩形成初期快速獲得壩體材料參數之替代方法,提供壩體穩定性模型分析以及壩體潰決模型分析所需參數訂定之參考。
過去針對滲流引致壩體破壞之安全評估,常透過數值模式進行分析,由於必須取得較詳細之壩體材料力學參數,評估作業往往較為耗時,在時效上無法符合應變初期時間急迫之需求,因此,本研究探討壩內浸潤線抵達壩址流出並朝壩頂方向發展之過程中,滲流引致壩體破壞發生之條件與機制,依據滲流力造成土體發生破壞之臨界條件,以理論推導提出滲流臨界安定坡度之評估公式(THE CRITICAL STABLE SEEPAGE SLOPE),作為判定滲流是否造成壩體發生破壞之判別條件。若天然壩下游面坡度( )高於滲流臨界安定坡度( ),當壩內浸潤線抵達壩體下游面並自壩面流出時,浸潤線以下之表層土體於滲流力作用下將發生破壞( > ),反之,若天然壩下游面坡度( )小於滲流臨界安定坡度( ),則天然壩體在滲流作用下仍將維持穩定狀態( < )。
本研究亦由水工模型實驗觀察結果,提出以滲流臨界安定坡度( )與天然壩下游面坡度( )之差值作為天然壩破壞規模判定之簡易方法,若兩者間之差值愈大,代表天然壩於滲流作用下可能發生較劇烈之破壞。而關於天然壩滲流破壞過程是否可能以部分塊體滑動之型式發生(驟然破壞),本研究亦依實驗結果提出利用滲流臨界安定坡度( )以及天然壩所在原始河床坡度( )作為判定條件之簡易方法,若滲流臨界安定坡度( )小於天然壩所在原始河床坡度( )時,發生驟然破壞之機率將大幅增高,反之,若滲流臨界安定坡度( )高於天然壩所在原始河床坡度( ),則以漸進式溯源沖刷破壞為主要破壞型式。
英文摘要 Natural dams could be created by landslides, debris flows, or avalanches, etc. The material that composes the dam usually is loose and heterogeneious colluvial debris with low shear strength. When the material strength cannot resist the force of the river flow from upstream, the dam could fail. The dam failure can dramatically increase the river discharge and result in loss of life. According to previous research, the life of the natural dams has forty one percent of chance to last less than a week and eighty five percent of chance to last no longer than a year. Due to this short life, the authority office needs to evaluate the risk and prepare the corresponding response plan within a short period of time after a natural dam is formed. Therefore, this study develops a rapid safety assessment method for natural dams.
The geometry of a natural dam is important information for assessment of the dam. However, the geometry is not easy to obtain due to remote location and extreme weather. This study collects world-wide natural dam cases to develop a database. Based on this database, a rapid assessment method for dam geometry is developed using statistical techniques. Only information needed for the assessment is the landslide area which can be rapidly obtained from remote sensing data which is not restricted by the location of the dam site and can provide critical information about the dam.
Because the characteristic parameters of the dam material are not easy to be quantitatively identified, the stability of the dam is difficult to be evaluated. Instead of drilling core sampling and in-situ experiment for accurate parameter values, this study develops a rapid estimation method for these parameters using soil mechanism theory and empirical equations. To prepare needed data, a surface sampling hole and particle size distribution analysis are used. The proposed method can be a substitute method to rapidly provide critical parameters of dam material for stability analysis and dam failure simulation model after a natural is formed.
To evaluate the stability of the natural dam correlated to seepage, a full scale simulation model is usually used. However, the parameter collection and full scale simulation model run need a period of time which may not meet the time requirement for emergency response at the early stage of a natural dam event. Therefore this study develops a concept of the critical stable seepage slope ( ) for evaluation of the dam stability considering the seepage. If the dam slope angle at the downstream direction ( ) is larger than the critical stable seepage slope ( ), the dam is considered as unstable. Because the seepage water surface reaches the foot of the dam, the seepage water flow would damage the dam foot and eventually cause failure of the dam. Otherwise, the dam is considered as stable.
In addition to the mathematical model, this study also uses physical hydraulic model for experiments. Based on the experiment results, the difference between dam slope angle at the downstream direction ( ) and the critical stable seepage slope ( ) is used. Larger difference while > indicates higher chance for dam failure.
The failure type during the seepage damage is also studied. The results show that two parameters are important: the critical stable seepage slope ( ) and the original slope of river channel ( ). If > , the failure type is sudden failure. Otherwise, the damage type is progressive failure in upstream direction.
論文目次 摘要 IV
誌謝 VIII
目錄 X
圖目錄 XII
表目錄 XVII
符號說明 XIX
第一章 緒論 1
1-1 前言 1
1-2 研究動機及目的 2
1-3 研究流程與架構 3
第二章 文獻回顧 5
2-1 堰塞湖天然壩形成類型 5
2-2 堰塞湖天然壩誘發原因 9
2-3 堰塞湖天然壩壩體特性 13
2-4 堰塞湖天然壩存在時間 16
2-5 堰塞湖天然壩壩體破壞因素 17
2-6 堰塞湖天然壩壩體穩定性評估 22
第三章 研究方法與結果 27
3-1 天然壩滲流破壞快速評估方法 29
3-1-1 理論分析 29
3-1-2 天然壩體破壞型式之水工模型實驗 47
3-1-2-1 室內實驗設備 47
3-1-2-2 實驗材料及特性分析 50
3-1-2-3 實驗條件之設定 51
3-1-2-4 實驗流程及量測系統 55
3-1-2-5 水工模型實驗結果及討論 59
3-1-3 天然壩滲流之數值模擬 76
3-1-3-1有限元素分析軟體- SEEP/W 76
3-1-3-3 數值模擬結果討論 83
3-2 天然壩體材料參數檢定方法 91
3-3 天然壩體幾何形狀評估方法 95
3-3-1 現有壩體形狀評估方法 95
3-3-2 堰塞湖天然壩壩體體積 99
3-3-3 堰塞湖天然壩幾何形狀 111
第四章 天然壩體破壞型式之快速評估方法 121
4-1天然壩滲流破壞之發生條件及規模之判定 122
4-2 天然壩破壞型式之判定方法與流程 140
第五章 結論與建議 144
5-1結論 144
5-2 建議 146
參考文獻 148
附錄一 13組滲流破壞之實驗過程 154
附錄二 7組滲流破壞之模擬過程 167
參考文獻 1. 柴賀軍、劉漢超、張倬元,「滑坡堵江的基本條件」,地質災害與環境保護,第7卷,第1期,第41-46頁,1996。
2. 符文熹、聶德新、任光明、萬宗禮、楊天俊、張富榮,「堵江作壩主要工程地質問題及實例」,地質災害與環境保護,第10卷,第1期,第52-56頁,1999。
3. 郭玉樹、伍恆志、林啟聖、陳昆廷、謝正倫、蔡光榮,「地震誘發崩塌形成天然壩之壩體形狀評估方法研究」,中華防災學刊,第4卷,第1期,第23-30頁,2012。
4. 陳樹群,「堰塞湖潰決機制與減災工法研究」,中華水土保持學報,第30卷,第4期,第299-311頁,1999。
5. 陳天健、王香云、徐瑞麟、蘇群雅,「台東知本溪堰塞湖」,地工技術,第106期,第87-92頁,2005。
6. 陳天健、王束銘、陳樹群、蘇群雅、林潤榮,「臺灣地區堰塞湖特性初步研究」,臺灣公共工程學刊,第4卷,第2期,第1-8頁,2008。
7. 陳昆廷、臧運忠、郭玉樹、呂明鴻、謝正倫,「莫拉克颱風引致堰塞湖之案例分析」,中華防災學刊,第2卷,第1期,第43-50頁,2010。
8. 董家鈞、楊賢德,「崩積層之分類與工程特性研究」,水土保持研究,第8卷,第1期,第38-46頁,2001。
9. 簡桐煙,「立霧溪托博濶天然壩的處理經過」,台電月刊,第359期,第56-66頁,1978。
10. 嚴祖文、魏迎奇、蔡紅、王福義,「堰塞湖天然壩安全性狀評估研究」,水利水電技術,第40卷,第2期,第74-81頁,2009。
11. 龔誠山、廖翊鈞,「草嶺崩塌及堰塞湖處置評估」,地工技術,第81期,第33-46頁,2000。
12. 伍恆志、郭玉樹、陳啟平、黃三益、陳昆廷、謝正倫,「堰塞湖天然壩壩體材料力學參數決定方法」,第二十屆水利工程研討會論文集,第30-37頁,2011。
13. 陳樹群、陳聯光,「天然壩溯源潰決實驗分析」,兩岸土石流與洪水災害防治研討會論文集,第315-324頁,2001。
14. 伍恆志,「天然壩材料粒徑對壩體溢流破壞之影響」,國立成功大學水利及海洋工程研究所碩士論文,2012。
15. 呂明鴻,「堰塞湖天然壩形狀預測」,國立成功大學水利及海洋工程研究所碩士論文,2010。
16. 行政院農委會林務局,「國有林堰塞湖監測與防災通報系統建置計畫」,成果報告,2011。
17. 林務局花蓮林區管理處,「木瓜溪事業區19林班崩塌區及堰塞湖防災計畫」,成果報告,2009。
18. 林務局屏東林區管理處,「旗山溪(那瑪夏鄉)、士文溪(春日鄉)二處堰塞湖調查評估及短中長期處理對策研擬計畫」,成果報告,2010。
19. 林務局臺東林區管理處,「太麻里溪包盛社堰塞湖緊急評估及全流域短中長期對策建議計畫」,成果報告,2010。
20. 林務局臺東林區管理處,「龍泉溪上游堰塞湖土砂觀測規劃與建置」,成果報告,2009。
21. 經濟部中央地質調查所,「易淹水地區上游集水區地質調查及資料庫建置」,成果報告,2011。
22. 經濟部水利署水利規劃試驗所,「堰塞湖引致災害防治對策之研究(1/3)」,第一年研究成果報告,2002。
23. 經濟部水利署水利規劃試驗所,「堰塞湖危險度、危害度評估方法與堰塞湖處置資訊管理系統建置」,成果報告,2011。
24. 農委會水土保持局,「複合型災害調查、分析與境況模擬」,成果報告,2011。
25. 田畑茂清、水山高久、井上公夫,「天然ダムと災害」,古今書院,第50-62頁,2002。(日文)
26. 高橋保、匡尚富,「天然ダムの決壊による土石流の規模に関する研究」,京都大學防災研究所年報,第31 B-2期,第601-615頁,1988。(日文)
27. Budhu, M. and Gobin, R.. “Slope Instability From Ground-Water Seepage.” Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 7, pp. 415-417, 1996.
28. Blikra, L. H. and Nemec, W.. “Postglacial colluvium in Western Norway: depositional processes, facies and palaeoclimatic record.” Sedimentology, Vol. 45, No. 5, pp. 909-959, 1998.
29. Costa, J. E. and Schuster, R. L.. “The formation and failure of natural dams.” Geological Society of America Bulletin, Vol. 100, pp. 1054-1068, 1988.
30. Casagli, N. and Ermini, L.. “Geomorphic analysis of landslide dams in the Northern Apennine.” Japanese Geomorphological Union, Vol. 20, No. 3, pp. 219-249, 1999.
31. Casagli, N., Ermini, L. and Rosati G.. “Determining grain distribution of the material composing landslide dams in the Northern Apennines: sampling and processing methods.” Engineering Geology, Vol. 69, pp. 83-97, 2003.
32. Chai, H. J., Liu, H. C., Zhang, Z. Y. and Xu Z. W.. “The distribution, causes and effects of damming landslide in China.” Journal of Chengdu University of Technology, Vol. 27, No. 3, pp. 303-308, 2000.
33. Cubrinovski, M. and Ishihara, K.. “Maximum and minimum void ratio characteristics of sands.” Soils and Foundations, Vol. 42, No. 6, pp. 65-78, 2002.
34. Cui, P., Zhu, Y. Y., Han, Y. S., Chen, X. Q. and Zhuang, J. Q.. “The 12 May Wenchuan earthquake-induced landslide lakes: distribution and preliminary risk evaluation.” Landslides, Vol. 6, pp. 209-223, 2009.
35. Dong, J. J., Tung, Y. H., Chen, C. C., Liao, J. J. and Pan, Y. W.. “Discriminant analysis of the geomorphic characteristics and stability of landslide dams.” Geomorphology, Vol. 110, pp. 162-171, 2009.
36. Dong, J. J., Tung, Y. H., Chen, C. C., Liao, J. J. and Pan, Y. W.. “Logistic regression model for predicting the failure probability of a landslide dam.” Engineering Geology, Vol. 117, pp. 52-61, 2011.
37. Evans, S. G. and Hungr, O.. “The assessment of rockfall hazard at the base of talus slopes.” Canadian Geotechnical Journal, Vol. 30, pp. 620-636, 1993.
38. Evans, S. G., Hermanns, R. L., Strom, A. and Scarascia-Mugnozza, G.. “Natural and artificial rockslide dams.” Lecture Notes in the Earth Sciences, Springer, Heidelburg, (2011).
39. Ermini, L. and Casagli, N.. “Prediction of the behaviour of landslide dams using a geomorphological dimensionless index.” Earth Surface Processes and Landforms, Vol. 28, No.1, pp. 31-37, 2003.
40. Fredlund, D. G. and Xing, A.. “Equations for the soil-water characteristic curve.” Canadian Geotechnical Journal. Vol. 31, pp. 521-532, 1994.
41. Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M. and Valigi, D.. “Landslide volumes and landslide mobilization rates in Umbria, central Italy.” Earth and Planetary Science Letters, Vol. 279, pp. 222-229, 2009.
42. Gregoretti, C., Maltauro, A. and Lanzoni, S.. “Laboratory Experiments on the Failure of Coarse Homogeneous Sediment Natural Dams on a Sloping Bed.” Journal of Hydraulic Engineering, Vol. 136, No. 11, pp. 868-879, 2010.
43. Hungr, O.. “A model for the runout analysis of rapid flow slides, debris flows and avalanches.” Canadian Geotechnical Journal, Vol. 32, pp. 610-623, 1995.
44. Hungr, O.. “Prospects for prediction of landslide dam geometry using empirical and dynamic models.” Italian Journal of Engineering Geology and Environment, Special Issue 1, pp. 151-155, 2006.
45. Korup, O.. “Geomorphometric characteristics of New Zealand landslide dams.” Engineering Geology, Vol. 73, pp. 13-35, 2004.
46. Kuo, Y. S., Tsang, Y. C., Chen, K. T. and Shieh, C. L.. “Analysis of landslide dam geometries.” Journal of Mountain Science, Vol. 8, No. 4, pp. 544-550, 2011.
47. Lo, C. M., Lin, M. L., Tang, C. L. and Hu, J. C.. “A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit.” Engineering Geology, Vol. 123, pp. 22-39, 2011.
48. Meyer, W., Schuster, R. L. and Sabol, M. A.. “Potential for seepage erosion of landslide dam.” Journal of Geotechnical Engineering, Vol. 120, No. 7, pp. 1211-1228, 1994.
49. Nemec, W. and Kazanci, N.. “Quaternary colluvium in west-central Anatolia: sedimentary facies and palaeoclimatic significance.” Sedimentology, Vol. 46, No. 1, pp. 139-170, 1999.
50. Peng, M. and Zhang, L. M.. “Breaching parameters of landslide dams.” Landslides Vol. 9, pp. 13-31, 2012.
51. Staple, W. J.. “Comparison of computed and measured moisture redistribution following infiltration.” Soil Sci. Soc. Arner. Proc. Vol. 33, No. 6, pp. 840-847, 1969.
52. Xu, Q., Fan, X. M., Huang, R. Q. and Westen, C. V.. “Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China.” Bulletin of Engineering Geology and the Environment, Vol. 68, pp. 373-386, 2009.
53. Holtz, R. D., Kovacs, W. D. and Sheahan, T. C. “An introduction to geotechnical engineering.” 2nd Edition, Pearson Prentice Hall, Upper Saddle River, New Jersey, (2010).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw