進階搜尋


下載電子全文  
系統識別號 U0026-2908201310273300
論文名稱(中文) 應用於頻帶複製技術之數位廣播系統分析與合成正交鏡像濾波器組快速演算法與硬體設計
論文名稱(英文) An Fast Algorithm and Hardware Design for Analysis and Synthesis Quadrature Mirror Filter Banks on the SBR in DRM
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 李孟昆
研究生(英文) Meng-kun Li
學號 N26001709
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 指導教授-雷曉方
口試委員-賴信志
口試委員-陳璽煌
口試委員-郭致宏
中文關鍵字 數位全球無線電廣波系統  頻帶複製法  快速傅立葉轉換  正交鏡像濾波器組 
英文關鍵字 Digital Radio Mondiale(DRM)  Spectral Band Replication(SBR)  Fast Fourier Transform(FFT)  Quadrature Mirror Filterbanks(QMF) 
學科別分類
中文摘要 本篇論文提出一個分析與合成正交鏡像濾波器組(QMF)的快速演算法和硬體設計,在數位廣波(DRM)中的頻帶複製法(SBR)裡會大量使用到此濾波器組,前後處理與核心快速傅立葉轉換(FFT)運算,以這兩種快速演算法實現正交鏡像濾波器組。在FFT核心,本論文使用Radix-2架構,可以使分析正交鏡像濾波器組(AQMF)減少最後一級蝴蝶運算的加法量,並可以計算出合成正交鏡像濾波器組(SQMF)。此外,本論文使用Lifting Scheme乘法技巧,以降低複數乘法所造成的實數乘法與加法量。在32通道的AQMF與原始定義運算量相比,乘法量降低87.99%,加法量降低73.51%,係數減少95.31%。在32通道的SQMF與Hsu et al.[13]文獻相比,乘法量降低51.54%,加法量降低21.12%,係數減少78.57%。因此,在未來的DRM應用中,本論文提出的快速演算法與其它文獻的方法相比,有更低的運算量與更高的相容性。
英文摘要 This brief presents a novel fast algorithm derivation and structure design of analysis and synthesis quadrature mirror filterbanks (SQMF) on the spectral band replication (SBR) in Digital Radio Mondiale (DRM). After pre- and post-procedures, a Fourier transform-based (FT-based) computational kernel was required to construct two types of fast algorithms that offered certain advantages. The proposed method employs a modified radix-2 fast Fourier transform (FFT) for analysis QMF (AQMF) to reduce the number of additions at the last stage of the butterfly, and adopts a radix-2 FFT to calculate the SQMF coefficients. In addition, a well-known lifting scheme (LS) was applied to reduce numerous multiplication and addition calculations. Compared with the original calculations for the long transform length, all multiplication, addition, and coefficient operations for the Proposed method AQMF had 87.99%, 73.51%, and 95.31% reductions, respectively. Compared with the fast SQMF algorithm by Huang et al., the Proposed method for SQMF reduces 51.54% of the multiplication, 21.12% of the addition, and 78.57% of the coefficients. Therefore, the proposed fast QMF algorithm is a better solution than other approaches for future DRM applications.
論文目次 中文摘要 I
ABSTRACT III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XIII
第一章 緒論 1
1.1. 研究背景 1
1.2. 進階音訊編碼(AAC)[2] 1
1.2.1. 背景 1
1.2.2. 簡介 2
1.2.3. AAC基本原理 4
1.2.3.1. AAC原理背景 4
1.2.3.2. AAC架構 7
1.3. 高效率進階音訊編碼 8
1.4. 數位全球無線電廣播系統[1] 10
1.5. 研究動機 13
1.6. 論文章節組織 17
第二章 文獻演算法分析與介紹 19
2.1. Hsu et al. Complex-QMF演算法[15] 19
2.1.1. 以第四型離散餘弦轉換為核心推導 20
2.1.1.1. 64通道的AQMF 20
2.1.1.2. 32通道的AQMF 21
2.1.1.3. 64通道的SQMF 23
2.1.1.4. 32通道的SQMF 24
2.1.2. 以離散傅立葉轉換為核心推導 25
2.1.2.1 AQMF 26
2.1.2.2 SQMF 27
2.1.3. 文獻探討 29
2.2. Huang et al. Complex-QMF演算法[16] 29
2.2.1. 演算法介紹 30
2.2.2. 硬體實現 31
2.2.3. 文獻探討 36
第三章 提出改良型可適用於AQMF與SQMF轉換的共架構演算法推導 37
3.1. 以DFT實現AQMF 38
3.1.1. AQMF快速演算法推導 38
3.1.2. 探討 46
3.2. 以DFT實現SQMF 47
3.2.1. SQMF快速演算法推導 47
3.2.2. 探討 59
3.3. Lifting Scheme 60
第四章 共架構硬體設計與規劃 63
4.1. 記憶體規劃 63
4.2. Lifting Scheme 乘法器設計 64
4.3. 快速傅立葉轉換的硬體規劃 67
4.3.1. 快速傅立葉轉換硬體規劃 67
4.3.2. FFT位址產生器[22] 69
4.4. 硬體流程與電路結果 70
第五章 改良型快速演算法的分析比較與結果 75
5.1. AQMF 75
5.2. SQMF 77
5.3. 32 Channel 乘加運算量比較結果 80
5.4. 16 Channel乘加運算量比較結果 83
第六章 結論與未來展望 87
參考文獻 89
參考文獻 [1]ETSI ES 201 980 V3.2.1, Digital Radio Mondiale (DRM); System Specification, France: European Telecommunications Standards Institute, 2012.
[2]ISO/IEC 14496-3:2005, “Information Technology—Generic Coding of Moving Pictures and Associated Audio Information—Part 3: Advanced Audio Coding (AAC), Subpart 4: General Audio Coding (GA)—AAC, TwinVQ, BSAC,” 2005.
[3]Information Technology-Coding of Audio-Visual Objects-Part 3 Audio, Amendment 1 Bandwidth Extension, ISO IEC 14496-3 2001 Amd. 1 2003, Nov. 2003.
[4]ISO/IEC 14496-3:2005/FDAM9, “Information Technology—Generic Coding of Moving Pictures and Associated Audio Information—Part 3: Advanced Audio Coding (AAC), Amendment 9: Enhanced Low Delay AAC,” 2007.
[5]http://www.ysps.tp.edu.tw/seed/Detail.asp?TitleID=501
[6]“工農學報,” 台北市立松山高級工農職業學校, 2009.
[7]Noll, P., "MPEG digital audio coding," Signal Processing Magazine, IEEE , vol.14, no.5, pp.59, 81, Sep 1997.
[8]音視訊處理實驗室, “實習單元-1.1 遮罩效應Masking Effect,” 國立中央大學, 2009.
[9]張金山, “DRM數位廣播帶外公率降低研究,” 大同大學, 通訊工程研究所, 碩士論文, July 2007.
[10]蕭刷琛, 張芳甄, 顏妏倩, “Speech-Compression 期末報告,” 國立成功大學, 電機工程學系, 2012.
[11]黃麗芳, “利用快速碼薄搜尋之AMR至G.729A語音轉碼,” 國立中央大學, 通訊工程研究所, 碩士論文, June 2007.
[12]“The Heritage of the QMF-Transform in aacPlus and MPEG Surround,” Developer Conference, Texas Instruments, 2007.
[13]莊文河, “遞迴式離散傅立葉正、逆轉換及修正型離散餘弦正、逆轉換之快速演算法推演與其綠能設計之實現,” 國立成功大學, 電機工程學系, 碩士論文, July 2010.
[14]R. Gluth, "Regular FFT-related transform kernels for DCT/DST-based polyphase filter banks," in Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on, 1991, pp. 2205-2208 vol.3.
[15]H. W. Hsu, C. M. Liu and W. C. Lee, “Fast complex quadrature mirror filterbanks for MPEG-4 HE-AAC,” presented at AES121st Convention, San Francisco, CA, USA, October 2006.
[16]J. Huang, G. Du, D. Zhang, Y. Song, L. Geng and M. Gao, "VLSI design of resource shared complex-QMF bank for HE-AAC decoder," ASIC, 2009. ASICON '09. IEEE 8th International Conference on , vol., no., pp.796,799, 20-23 Oct 2009.
[17]M. Jun and T. Kun, “A Fast Algorithm for DCT IV,” Signal processing (Chinese)(1999-02-014), vol. 15, no. 2, Jun 1999.
[18]A. T. Fam, “Efficient complex matrix multiplication,” IEEE Transactions on Computers, vol. 37, no. 7, pp. 877-879, 1988.
[19]I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp. 247-269, 1998.
[20]S. Oraintara, Y. J. Chen and T. Q. Nguyen, “Integer fast Fourier transform," Signal Processing, IEEE Transactions on, vol. 50, no. 3, pp. 607–618, Mar 2002.
[21]X. Gu, M. Dick, Z. Kurtisi, U. Noyer and L. Wolf, “Network-centric Music Performance: Practice and Experiments,” Communications Magazine, IEEE, vol. 43, no. 6, pp. 86-93, June 2005.
[22]李岳書, “適用於數位/行動電視廣播系統(DVB-T/H)之高效能可變點數快速傅立葉轉換處理器,” 逢甲大學, 電子工程學系電子研究所, 碩士論文, Jan 2009.
[23]S. C. Lai, S. F. Lei, C. L. Chang, C. C. Lin and C. H. Luo, “Low computational complexity, low power, and low area design for the implementation of recursive DFT and IDFT algorithms,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 12, pp.921-925, 2009.
[24]S. C. Lai, W. H. Juang, C. L. Chang, C. C. Lin, C. H. Luo, and S. F. Lei, “Low-Computation cycle, Power-Efficient, and Reconfigurable Design of Recursive DFT for Portable Digital Radio Mondiale Receiver,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 8, pp. 647–651, August 2010.
[25]S. C. Lai, W. H. Juang, C. C. Lin, C. H. Luo and S. F. Lei, “High-Throughput, Power-Efficient, Coefficient-Free and Reconfigurable Green Design for Recursive DFT in a Portable DRM Receiver,” International Journal of Electrical Engineering, vol. 18, no.3, pp. 137–145, June 2011.
[26]S. C. Lai, Y. S. Lee and S. F. Lei, “Low-Power and Optimized VLSI Implementation of Compact RDFT Processor for the Computations of DFT and IMDCT in a DRM and DRM+ Receiver,” J. Low Power Electron. Appl., vol. 3, no. 2, pp. 99-113, May 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw