系統識別號 U0026-2908201215430700
論文名稱(中文) 使用雷射掃瞄技術探索裸露礫石河床表面
論文名稱(英文) Exploration of Laser Scanning for Exposed Fluvial Gravel Bed Surfaces
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系碩博士班
系所名稱(英) Department of Geomatics
學年度 100
學期 2
出版年 101
研究生(中文) 黃國豪
研究生(英文) Guo-Hao Huang
學號 p68941019
學位類別 博士
語文別 英文
論文頁數 101頁
口試委員 指導教授-王驥魁
中文關鍵字 雷射掃瞄  礫石河床粗糙度  水流方向  調整程序 
英文關鍵字 laser scanning  gravel bed roughness  flow direction  regularization 
中文摘要 了解礫石河床的結構對於研究礫石河床粗糙度與沉積物運輸兩者而言相當重要。許多研究已經致力於獲取礫石河床表面資料,用以分析礫石河床的粗糙度。這些研究中大多受限於用來量測礫石河床表面高程資料的儀器特性,因而只能討論小範圍的取樣區域。近年來對於量測大範圍礫石河床區域的研究,已逐漸受到重視。此外使用空載光達技術快速掃瞄大範圍區域並獲得空間資訊,為目前所偏重的掃瞄方法。本研究中,我們使用空載光達資料掃瞄河段資料,並分析使用空載光達資料推估而得之粗糙度特性。

英文摘要 Understanding of the structure of gravel bed surface is vital for the gravel bed roughness and sediment entrainment. A lot of works have been done on the acquisition of gravel bed surface to investigate the gravel bed roughness. Most of these studies only focus on the small sampling area due to the limitation of the instruments that were used to acquire the elevation information of gravel bed surface. Recently, there has been considerable interest in measuring the gravel bed surface over a large area. And, airborne laser scanning (ALS) has become the preferred technology of rapidly acquiring the spatial data for large areas. We use ALS to measure a rive section and investigate the gravel bed roughness derived from ALS data in this dissertation.

Due to large footprint sizes of ALS, the gravel bed surface would be smoother in ALS data, which causes a biased roughness. Moreover, the scaling characteristics of the gravel bed roughness on the change of measurement scale are still lack of empirical investigation. As part of this issue, we use terrestrial laser scanning (TLS) to capture high resolution data at field sites. Chapter 2 presents a two-stage mean-based algorithm for TLS data to generate the digital surface model (DSM). In Chapter 3, we use the regularization method to establish the scaling relations of the gravel bed roughness between TLS-derived DSM and ALS data. In Chapter 4, we explore the gravel bed roughness of ALS data of a river section, and show the flow direction comparison results between the direction of maximum continuity exhibited in the two dimensional variogram surfaces of ALS data and the flow direction derived from a hydrodynamic model at three flow rates.
論文目次 摘要 i
Abstract iii
Acknowledgements v
Contents vii
List of Tables xi
List of Figures xiii
Chapter 1 Introduction 1
1.1 Background and objectives 1
1.2 Contribution 6
1.3 Organization 6
Chapter 2 Mesoscale Terrestrial Laser Scanning of Fluvial Gravel Surfaces 9
2.1 Introduction 10
2.2 Material and Methods 12
2.2.1 Study sites 12
2.2.2 Terrestrial laser scanning 13
2.2.3 Multiple scan strategy 14
2.2.4 DSM generation 16
2.2.5 Manual surface profile collection 23
2.3 Results and Discussion 23
2.3.1 TLS-derived DSM 23
2.3.2 Assessment of TLS-derived DSM 27
2.4 Conclusion 31
2.5 Acknowledgement 32
Chapter 3 Multiscale Geostatistical Estimation of Gravel Bed Roughness From Terrestrial and Airborne Laser Scanning 33
3.1 Introduction 34
3.2 Data 37
3.3 Method 41
3.4 Results and Discussion 45
3.4.1 2-D variogram surfaces 45
3.4.2 Regularization 48
3.5 Conclusion 53
3.6 Acknowledgement 54
Chapter 4 Geostatistical Characterization of Gravel Bed Surface Using Airborne Laser Scanning 55
4.1 Introduction 55
4.2 Data 57
4.2.1 Laser scanning 57
4.2.2 Simulated flow direction 64
4.3 Method 64
4.3.1 Estimation of the gravel bed roughness 64
4.3.2 Flow direction comparison 65
4.4 Results and Discussion 66
4.4.1 2-D variogram surfaces 66
4.4.2 Direction of maximum continuity in area E 71
4.4.3 Comparison of flow direction 73
4.4.4 Regularization 79
4.4.5 Gravel bed roughness 83
4.5 Conclusion 91
Chapter 5 Conclusion 93
References 95
參考文獻 A. Defina, "Two dimensional shallow flow equations for partially dry areas," Water Resour. Res., vol. 36, pp. 3251-3264, Nov. 2000.
A. G. Journel and C. J. Huijbregts, "Mining geostatistics," Academic Press, London, 1978.
A. Marion, S. J. Tait, and I. K. McEwan, "Analysis of small-scale gravel bed topography during armoring," Water Resour. Res., vol. 39, doi: 10.1029/2003WR002367, Dec. 2003.
A. Robert, "Statistical properties of sediment bed profiles in alluvial channels," Math. Geol., vol. 20, pp. 205-225, Apr. 1988.
A. R. Morris, F. S. Anderson, P. J. Mouginis-Mark, A. F. C. Haldemann, B. A. Brooks, and J. Foster, "Roughness of Hawaiian volcanic terrains," J. Geophys. Res.-Planet, vol. 113, doi:10.1029/2008JE003079, Dec. 2008.
B. F. Sanders, "Evaluation of on-line DEMs for flood inundation modeling," Adv. Water Resour., vol. 30, pp. 1831-1843, Aug. 2007.
C.-K. Wang and W. D. Philpot, "Using airborne bathymetric lidar to detect bottom type variation in shallow waters", Remote Sensing of Environment, vol. 106, pp. 123-135, Jan 2007.
C.-K. Wang, F.-C. Wu, G.-H. Huang, and C. Y. Lee, "Mesoscale terrestrial laser scanning of fluvial gravel surface," IEEE Geosci. Remote Sens. Lett., vol. 8, pp. 1075-1079, Nov. 2011.
C. De Jong, "Measuring changes in micro and macro roughness on mobile gravel beds," Erosion and Sediment Transport Monitoring Programmes in River Basins, pp. 31-40, Oslo, Norway, 1992.
C. V. Deutsch and A. G. Journel, "GSLIB geostatistical software library and user's guide," edited, Oxford University Press, New York, 1998.
D. D. Lichti, S. J. Gordon, and T. Tipdecho, "Error models and propagation in directly georeferenced terrestrial laser scanner networks," J. Surv. Eng.-ASCE, vol. 131, pp. 135-142, Nov. 2005.
D. J. Furbish, "Conditions for Geometric Similarity of Coarse Stream-Bed Roughness," Math. Geol., vol. 19, pp. 291-307, May 1987.
D. J. Graham, I. Reid, and S. P. Rice, "Automated sizing of sediments: coarse-grained Image-processing procedures," Math. Geol., vol. 37, pp. 1-28, Jan. 2005a.
D. J. Graham, S. P. Rice, and I. Reid, "A transferable method for the automated grain sizing of river gravels," Water Resour. Res., vol. 41, pp. 12, Jul. 2005b.
D. J. Milan, G. L. Heritage, and D. Hetherington, "Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river," Earth Surf. Proc. Land., vol. 32, pp. 1657-1674, Oct. 2007.
D. J. Milan, "Terrestrial laser scan-derived topographic and roughness data for hydraulic modeling of gravel-bed rivers," in Laser Scanning for the Environment Sciences, G. Heritage and A. R. G. Large, Eds., ed West Sussex, UK: Wiley-Blackwell, pp. 133 – 146, 2009.
D. J. Milan, and G. L.Heritage, "LiDAR and ADCP use in gravel bed rivers: advances since GBR6". In Church, M., Roy, A. and Biron, P. (eds) Gravel-bed rivers 7, John Wiley & Sons, Chichester, 2012.
E. P. Baltsavias, "Airborne laser scanning: basic relations and formulas," ISPRS J. Photogramm., vol. 54, pp. 199-214, Jul. 1999.
F. C. Wu, Y. C. Shao, and Y. C. Chen, "Quantifying the forcing effect of channel width variations on free bars: Morphodynamic modeling based on characteristic dissipative Galerkin scheme, " J. Geophys. Res., vol. 116, doi:10.1029/2010JF001941, 2011.
E. H Isaaks, and R. M. Srivastava, "Applied geostatistics," Oxford University Press, New York, 1989.
F. M. Danson, D. Hetherington, F. Morsdorf, B. Koetz, and B. Allgower, "Forest canopy gap fraction from terrestrial laser scanning," IEEE Geosci. Remote Sens. Lett., vol. 4, pp. 157-160, Jan. 2007.
Faro Technology Inc., "Faro Photon 80/20 Specification,"
http://www.faro.com/pdf/FARO_Photon_en.pdf, 2008 [Accessed July 1, 2012]
GIM International, "Product survey: airborne lidar sensors,"
[Accessed July 1, 2012]
G. Heritage and D. Hetherington, "Towards a protocol for laser scanning in fluvial geomorphology," Earth Surf. Proc. Land., vol. 32, pp. 66-74, Jan. 2007.
G. L. Heritage and D. J. Milan, "Terrestrial Laser Scanning of grain roughness in a gravel-bed river," Geomorphology, vol. 113, pp. 4-11, Dec. 2009.
G.-H. Huang and C.-K. Wang, "Multiscale geostatistical estimation of gravel-bed roughness from terrestrial and airborne laser scanning", IEEE Geoscience and Remote Sensing Letters, vol. 9, pp. 1084-1088, doi: 10.1109/LGRS.2012.2189351, Nov. 2012.
G. Smart, J. Aberle, M. Duncan, and J. Walsh, "Measurement and analysis of alluvial bed roughness," J. Hydraul. Res., vol. 42, pp. 227-237, Mar. 2004.
J. Aberle and V. Nikora, "Statistical properties of armored gravel bed surfaces,"
Water Resour. Res., vol. 42, W11414, doi:10.1029/2005WR004674, Nov. 2006.
J. B. Butler, S. N. Lane, and J. H. Chandler, "Assessment of DEM quality for characterizing surface roughness using close range digital photogrammetry," Photogramm. Rec., vol. 16, pp. 271-291, Oct. 1998.
J. B. Butler, S. N. Lane, and J. H. Chandler, "Characterization of the structure of river-bed gravels using two-dimensional fractal analysis," Math. Geol., vol. 33, pp. 301-330, Apr. 2001.
J. M. Verdú, R. J. Batalla, J. A. Martínez-Casasnovas, "High-resolution grain-size characterisation of gravel bars using imagery analysis and geo-statistics," Geomorphology, vol. 72, pp. 73-93, Dec. 2009.
J. Shan and C. K. Toth, "Topographic laser ranging and scanning principles and processing," edited, CRC Press, Boca Raton, 2009.
K. L. Frankel and J. F. Dolan, "Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data," J. Geophys. Res.-Earth, vol. 112, doi: 1 0.1029/2006JF000644, May 2007.
Leica Geosystems, "Leica HDS3000 Product Specifications," http://hds.leica-geosystems.com/hds/en/Leica_HDS3000.pdf, 2004 [Accessed July 1, 2012]
Leica Geosystems, "Leica HDS 4500 Datasheet," http://hds.leica-geosystems.com/hds/en/HDS4500_25m_and_53m.pdf, 2005 [Accessed July 1, 2012]
M. Armstrong, "Basic linear geostatistics," Springer, 1998.
M. Cavalli, P. Tarolli, L. Marchi, and G. D. Fontana, "The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology," Catena, vol. 73, pp. 249-260, May 2008.
M. G. Wolman, "A method of sampling coarse river-bed material," Transactions of the American Geophysical Union, vol. 35, pp. 951-956, Dec. 1954.
N. E. Bergeron, "Scale-space analysis of stream-bed roughness in coarse gravel-bed streams," Math. Geol., vol. 28, pp. 537-561, Jul. 1996.
N. J. Clifford, A. Robert, and K. S. Richards, "Estimation of flow resistance in gravel-bedded Rivers - a physical explanation of the multiplier of roughness length," Earth Surf Proc Land, vol. 17, pp. 111-126, Mar. 1992.
N. S. Entwistle and I. C. Fuller, "Terrestrial laser scanning to derive surface grain size facies character of gravel bars". In G. L. Heritage, R. Andrew and G. Large. Laser Scanning for the Environmental Sciences, Blackwell, London, UK, pp. 102-114, May 2009.
Optech Incorporated, "ALTM 3070 Datasheet",
http://www.optech.ca/pdf/Specs/specs_altm_3070.pdf, 2003. [Accessed July 1, 2012]
Optech Incorporated, "ALTM Pegasus HD 500 Datasheet",
http://www.optech.ca/pdf/ALTM_Pegasus_SpecSheet_111115.pdf, 2011. [Accessed July 1, 2012]
P. Alho, A. Kukko, H. Hyyppa, H. Kaartinen, J. Hyyppa, and A. Jaakkola, "Application of boat-based laser scanning for river survey," Earth Surf Proc Land, vol. 34, pp. 1831-1838, Oct. 2009
P. E. Carbonneau, S. N. Lane, and N. E. Bergeron, "Cost-effective non-metric close-range digital photogrammetry and its application to a study of coarse gravel river beds," Int. J. Remote Sens., vol. 24, pp. 2837-2854, Jul. 2003.
P. E. Carbonneau, S. N. Lane, and N. E. Bergeron, "Automated grain size measurements from airborne remote sensing for long profile measurements of fluvial grain sizes," Water Resour. Res., vol. 41, doi: doi:10.1029/2005WR003994, Nov. 2005.
P. M. Atkinson and P. J. Curran, "Defining an optimal size of support for remote-sensing investigations," IEEE Trans. Geosci. Remote Sensing, vol. 33, pp. 768-776, May 1995.
R. Hodge, J. Brasington, and K. Richards, "In situ characterization of grain-scale fluvial morphology using Terrestrial Laser Scanning," Earth Surf. Proc. Land., vol. 34, pp. 954-968, Apr. 2009a.
R. Hodge, J. Brasington, and K. Richards, "Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics," Sedimentology, vol. 56, 2024-2043, May 2009b.
Riegl USA Inc., "LMS-Z420i Datasheet,"
http://www.georeal.cz/laser/LMS420i.pdf, 2005. [Accessed July 1, 2012]
R. A. Hodge, "Using simulated terrestrial laser scanning to analyse errors in high-resolution scan data of irregular surfaces," ISPRS J. Photogramm., vol. 65, pp. 227-240, Mar. 2010.
R. Webster and M. A. Oliver, "Geostatistics for environmental scientists," 2nd ed., John Wiley & Sons, Chichester, 2007.
S. Cintoli, S. P. Neuman, and V. D. Federico, "Generating and scaling fractional brownian motion on finite domains," Geophys. Res. Lett., vol. 32, L08404, doi:10.1029/2005GL022608, Apr. 2005.
T. H. Diehl, "Potential drift accumulation at bridges", FHWA-RD-97-28, U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., 1997
V. I. Nikora, D. G. Goring, and B. J. F. Biggs, "On gravel-bed roughness characterization," Water Resour. Res., vol. 34, pp. 517-527, Mar. 1998.
V. Nikora and J. Walsh, "Water-worked gravel surfaces: High-order structure functions at the particle scale," Water Resour. Res., vol. 40, W12601, doi:10.1029/2004WR003346., Dec. 2004.
W. L. Lu, K. P. Murphy, J. J. Little, A. Sheffer, and H. B. Fu, "A hybrid conditional random field for estimating the underlying ground surface from airborne LiDAR data," IEEE Trans. Geosci. Remote Sens., vol. 47, pp. 2913-2922, Aug. 2009.
Y.-L. Lin and C.-K. Wang, "Assessment of airborne lidar data for instream flow type classification," IEEE Int. Geosci. Remote Sens. Sympo. 2010, pp. 930 – 933, Honolulu, Hawaii, USA, July 2010.
Y. W. Choi, Y. W. Jang, H. J. Lee, and G. S. Cho, "Three-dimensional LiDAR data classifying to extract road point in urban area," IEEE Geosci. Remote Sens. Lett., vol. 5, pp. 725-729, Oct. 2008.
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-05起公開。

  • 如您有疑問,請聯絡圖書館