進階搜尋


下載電子全文  
系統識別號 U0026-2908201214480600
論文名稱(中文) 利用新穎兆赫波波導實現分子感測
論文名稱(英文) Using Novel THz Waveguides for Molecular Sensing
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 游博文
研究生(英文) Bor-Wen You
學號 L78961115
學位類別 博士
語文別 英文
論文頁數 94頁
口試委員 口試委員-潘犀靈
口試委員-孫啟光
召集委員-蔡錦俊
口試委員-張允崇
口試委員-于欽平
指導教授-呂佳諭
中文關鍵字 兆赫波  分子感測  波導  兆赫波時域光譜學 
英文關鍵字 terahertz wave  THz  molecular sensing  waveguide  terahertz time-domain spectroscopy  THz-TDS 
學科別分類
中文摘要 本研究利用簡單波導結構達成兆赫波分子感測器的構想,已經成功實現在兆赫波次波長塑膠線波導、介質管狀波導以及金屬光柵整合彩帶型波導上。次波長塑膠線波導可以藉由高強度消逝波,作為高靈敏度的液體感測器;此塑膠線傳播兆赫波時具有負波導色散的特徵,並與空氣披附層折射係數有強烈的關連性,所以載負微流體晶片的待測樣品可以與此塑膠線感測器整合,以偵測微溶在酒精的三聚氫氨分子為例,證實待測濃度約為20~80ppm是可以辨識的。本研究另外探討具有高靈敏度共振波導模態的介質波導管,作為分子薄膜厚度與折射係數感測器;為了達成厚度感測的高靈敏度,介質波導管壁必須具備低折射係數以及薄厚度,根據高分子膠感測結果顯示,最低可測厚度約2.9-micrometer,相當於1/225的波長。本研究將介質波導管的折射係數感測概念,實現在粉末混合物與揮發蒸氣分子的辨識上,分別是利用波導管的管壁披附層與空心管結構來達成感測;為了達到高靈敏度地感測座落在空心與披附層的樣品,本研究針對橫切面的功率分布,來模擬分析最具靈敏性的共振模態。粉末混合物感測的應用是將待測物吸附在管壁上,從模擬分析可知,低階共振模態具有高靈敏度;另外利用空心感測蒸氣分子的應用,反而在高階共振模態上最具靈敏度;這是根據分布在感測區域的穿透功率多寡而定,較高功率分布的共振模態就具有高靈敏度。以實際感測的結果顯示,利用介質波導管感測空心區域的蒸氣時,最低可偵測密度約是1.6nano-mole/mm^3;而在管壁上偵測粉末的光譜反應靈敏度,則可以達到22.2GHz/RIU,相較於其他兆赫波感測器而言,這是最高靈敏度的表現。在本研究中,另一種感測元件的概念是利用拘束在金屬表面的兆赫表面波,來偵測薄膜與顆粒狀待側物。本研究所發表的光柵整合兆赫波彩帶型波導,證實兆赫波在此混合型結構上可以傳播,並且將光柵金屬厚度與週期中空氣比例最佳化後,除了可以讓兆赫波的表面拘限性最好之外,還可以讓傳播距離最長;根據實際量測結果可以證實,所拘限表面波的消逝長度可以低於1/5波長,最長傳播可以達到40倍的波長,相當於50mm的波導長度,優於其他金屬結構傳導與拘限的能力。在此波導結構下,我們發現布拉格共振可以造成兆赫波反射的現象,根據分析,此共振表面波的色散行為,與入射光柵的角度以及光柵周圍折射係數有關;利用共振表面波的色散特性,我們成功證實,當表面波拘束在次波長範圍時可以偵測待測物表面的顆粒分布,其中最小可偵測量可以達到17nano-moles/mm^2的分布密度量。
英文摘要 Simple waveguide structures applied as terahertz molecular sensors are successfully demonstrated in the dissertation, including a plastic-wire, a dielectric-pipe and a metal-grating-integrated ribbon waveguides. A liquid sensor is approved using a subwavelength terahertz plastic-wire waveguide based on the enhanced evanescent field surrounding the wires. There is negative waveguide dispersion in the wave guidance along a plastic wire and the negative dispersion strongly depends on cladding indices. Fluidic channel is successfully integrated with the wire sensor to detect minute concentration of melamine grains dissolved in the alcohol solutions ranged from 20ppm to 80ppm. Dielectric pipe-waveguides are manipulated as thickness and refractive-index sensors, and the high-sensitivity criteria of resonant waveguide modes are expressed in the research. To achieve sensitive detection of thickness variation on the pipe-wall, the pipe-wall thickness and refractive-indices should be small. The minimum thickness of overlayer can be detected around 2.9-micrometer, corresponded to THz-wavelength/225. The refractive-index sensing of the dielectric pipes is executed to recognize powder mixtures and vaporized molecules, respectively, using the cladding and hollow-core as interaction areas. To achieve the high sensitivity for analytes in the cladding and cores, we simulate the cross power distributions to judge the sensitive resonant modes. When the pipe is used for powder sensing in the cladding, low-order resonant modes have the high sensitivity. In contrast to use cladding as the interaction area, high-order resonant modes have the high sensitivity when the hollow-core is used as interaction area for vapor sensing. The index sensing abilities in the cladding and hollow-core are contributed to the transmitted power ratios interacting with analytes, that is, large interaction power contributes high sensitivity. The molecular density can be identified inside the pipe-core approximating to 1.6nano-mole/mm3 and the spectral sensitivity using the cladding to detect analytes is about 22.2GHz/RIU, which is the record compared among other terahertz sensors. Another case in the research for molecular sensing is to apply confined terahertz-surface waves on the metal surface to detect thin-film and the particles. A grating-integrated terahertz ribbon waveguide is presented in the research and terahertz waves can be guided in the hybrid structure. The geometry of the metal grating is tailored from the metal thickness and air-gap filling ratio to optimize the field confinement and transmission distance. The grating guided surface waves are able to be confined within THz-wavelength/5 and the longest delivered distance approaches to 40 THz-wavelength as long as 50mm. This is superior to other presented metal-structures guiding spoof THz-surface plasmons, and Bragg-resonance induced terahertz-wave reflection is observed in the scheme. The dispersion of resonant surface waves is dependent on the incident angles into the grating and the grating-embedded index. Based on the dispersion properties of resonant surface-waves, the subwavelength confined surface-waves are approved to detect polymer films dispersed with particles, and the minimum particle density can be detected around 17nano-moles/mm^2.
論文目次 Chpter1 Introduction.......................................1
1.1Motivation..............................................1
1.2 An Outline of Dissertation.............................4
Reference..................................................6
Chpter2 Terahertz Plastic Wire Waveguide Sensors...........8
2.1 System Configuration:Waveguide-based Terahertz Time-Domain Spectroscopy...............................................9
2.2 Subwavelength Plastic Wire Terahertz Time-Domain Spectroscopy..............................................10
2.2.1Propagation Attenuation..............................10
2.2.2Waveguide Dispersion.................................13
2.3A Plastic Wire Waveguide for Liquid Sensing............17
2.3.1Evanescent Wave of THz Subwavelength plastic wire....18
2.3.2Experimental Setup and Waveguide Dispersion Measurement...............................................20
2.3.3Sensing Results and Discussions......................23
Reference.................................................30
Chpter3Terahertz Dielectric Pipe Waveguide Sensors
3.1Subwavelength Film Sensing Using a Pipe Waveguide......33
3.1.1Principle of Thin Film Detection.....................35
3.1.2Experimental Results and Discussion..................39
3.2Refractive Index Sensor Based on Pipe Waveguides.......45
3.2.1Powder Sensing with the Cladding Layer of A Pipe Waveguide.................................................46
3.2.2Vapor Sensing with The Hollow Core of A Pipe Waveguide.................................................54
Reference.................................................60
Chpter4Metal-grating-assisted Terahertz Ribbon Waveguide Sensors...................................................64
4.1Configuration of Metal Grating Waveguide...............65
4.2Subwavelength Confined Terahertz Surface Waves.........69
4.3Terahertz Surface Wave Sensing.........................76
Reference.................................................86
參考文獻 1.1 M. Tonouchi, “Cutting-edge terahertz technology,“ Nat. Photonics 1, 97(2007).
1.2 R. M. Woodward, “Terahertz technology in the medical and pharmaceutical industry,” Preclinica 2, 328-335 (2004).
1.3 K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003).
1.4 T.R. Globus, D.L. Woolard, T. Khromova, T.W. Crowe, M. Bykhouskaia, B.L. Gelmont, J. Hesler, and A.C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29, 89-100 (2003).
1.5 P. C. Ashworth, E. P.-MacPherson, E. Provenzano, S. E. Pinder,A. D. Purushotham, M. Pepper, and V. P. Wallace, ”Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17, 12444-12454 (2009).
1.6 C. Debus, and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
1.7 Z. Jiang, M. Li, and X.-C. Zhang, “Dielectric constant measurement of thin films by differential time-domain spectroscopy,” App. Phys. Lett. 76, 3221-3223 (2000).
1.8 S. Krishnamuthy, M. T. Reiten, S.A. Harmon, and R.A. Cheville, “Characterization of thin polymer films using terahertz time-domain interferometry,” Appl. Phys. Lett. 79, 875-877 (2001).
1.9 D. Hashimshony, I. Geltner, G. Cohen, Y. Avitzour, and A. Zigler, “Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy,” J. Appl. Phys. 90, 5778-5781 (2001).
1.10 M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, and S.-Q. Wang, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” App. Phys. Lett. 74, 2113-2115 (2009).
1.11 H. Kurt, and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” App. Lett. Phys. 87, 041108 (2005).
1.12 J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids [Invited]”, J. Opt. Soc. Am. B 26, A79-A89 (2009).
1.13 C. Debus, and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
1.14 H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
1.15 R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” App. Phys. Lett. 95, 171113 (2009).
1.16 S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
1.17 T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
1.18 http://www.webapps.cee.vt.edu/ewr/environmental/teach/smprimer/immuno/immuno.html
2.1 L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, ”Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
2.2 L.-J. Chen, Hung-Wen Chen, Tzeng-Fu Kao, Ja-Yu Lu, and Chi-Kuang Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308-310 (2006).
2.3 L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004).
2.4 J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13, 2135-2140 (2005).
2.5 B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17, 20675-20683 (2009).
2.6 H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32, 1017-1019 (2007).
2.7 J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996-2034 (1996).
2.8 B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, and C.-L. Pan, ” Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phy. Lett. 96, 051105 (2010).
2.9 L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, ”Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92, 181104 (2008).
2.10 M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
2.11 Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
2.12 I. A. Ibraheem A.-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
2.13 J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786-1795 (2008).
2.14 H. Kurt, and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87, 241119 (2005).
2.15 F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31, 1118-1120 (2006).
2.16 H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
2.17 S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
2.18 M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154-156 (2002).
2.19 A. Chakraborty, and N. Guchhait, “Inclusion complex of charge transfer probe 4-amino-3-methyl benzoic acid methyl ester (AMBME) with b-CD in aqueous and non-aqueous medium: medium dependent stoichiometry of the complex and orientation of probe molecule inside b-CD nanocavity, “J. Incl. Phenom. Macrocycl. Chem. 62, 91-97 (2008).
2.20 N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid Nanofluid 4, 117-127 (2008).
2.21 A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17, 8012-8028 (2009).
2.22 J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, ”Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92, 084102 (2008).
2.23 C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, “All-terahertz fiber-scanning near-field microscopy,” Opt. Lett. 34, 1084-1086 (2009).
2.24 B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nature Materials 1, 26-33 (2002).
2.25 H. Kitahara, T. Yagi, K. Mano, and M. Wada Takeda, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82-85 (2005).
2.26 L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S.R. Keiding,” THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330-333 (1995).
2.27 B. E. A. Saleh and M. C. Teich, fundamentals of photonics (John Wiley & Sons, New York, NY 1991).
2.28 J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14, 6993-6998 (2006).
2.29 C.-L. Chen, elements of optoelectronics and fiber optics, chap.8 (Times Mirror Higher Education Group, Inc. company, 1996).
2.30 A. Sano, Kawasaki, T. Kuroishi, Chiba, Y. Miyazaki, Machida, S. Yokoyama, Yokohama, K. Matsuura, “Easily soluble polyethylene powder for the preparation of fibers or films having high strength and high elastic modulus,” united states patent 4760120 (1988).
2.31 IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, “Some chemicals that cause tumours of the kidney or urinary bladder in rodents, and some other substances”. http://monographs.iarc.fr/ENG/Monographs/vol73/index.php
2.32 R. Baozeng, L. Chen, Y. Xiaoliang and W. Fuan, “Determination and correlation of melamine solubility”, Chinese J. Chem. Eng. 54, 1001-1003 (2003).
3.1 S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
3.2 F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31, 1118-1120 (2006).
3.3 H. Kurt, and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
3.4 C. Debus, and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
3.5 S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
3.6 J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786-1795 (2008).
3.7 B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,” Anal. Chim. Acta 601, 141-155 (2007).
3.8 R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
3.9 A. Hassani, A. Dupuis, and M. Skorobogatiy, “Surface-plasmon-resonance-like fiber-based sensor at terahertz frequencies,” J. Opt. Soc. Am. B 25, 1771-1775 (2008).
3.10 C.-H Lai, Y.-C Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457-3459 (2009).
3.11 C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309-322 (2009).
3.12 N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592-1594 (2002).
3.13 M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Optics 47, 474-479 (2008).
3.14 A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26, 1550-1557 (2009).
3.15 M. Zourob, S. Elwary and A. Turner, “Fiber Optic Biosensors for Bacterial Detection,” in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, (Springer Science, New York, 2008).
3.16 B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, ”Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18, 19353-19360 (2010).
3.17 J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996-2034 (1996).
3.18 J. O. Carnal, and M. S. Naser, “The use of dilute solution viscometry to characterize the network properties of carbopol microgels,” Colloid Polym. Sci. 270, 183-193 (1992).
3.19 Y. Kawashima, and M. Kuwano, “Carboxyvinyl polymer having Newtonian viscosity,” United States patent 5458873 (1992).
3.20 G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6THz spectral coverage,” Opt. Express 17, 22847-22854 (2009).
3.21 N. Kinrot, “Analysis of bulk material sensing using a periodically segmented waveguide Mach–Zehnder interferometer for biosensing,” J. Lightwave Technol. 22, 2296-2301 (2004).
3.22 E. Pickwell, and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39, R301-R310 (2006).
3.23 W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” J. Opt. Soc. Am. B 25, 1059-1072 (2008).
3.24 H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87, 241119 (2005).
3.25 M. Nagel, P. Haring, H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154-156 (2002).
3.26 J. F. O'Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786-1795 (2008).
3.27 R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfuidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
3.28 A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47, 474-479 (2008).
3.29 N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592-1594 (2002).
3.30 B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20, 5858-5866 (2011).
3.31 R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Milli. Waves 28, 363-371 (2007).
3.32 C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309 (2010).
3.33 N. Kinrot, “Analysis of bulk material sensing using a periodically segmented waveguide Mach-Zehnder interferometer for biosensing,” J. Lightwave Technol. 22, 2296-2301 (2004).
3.34 K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003).
3.35 J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
3.36 J. A. Dean, Lang’s Handbook of Chemistry (McGraw-Hill 1999), Chap.5.
3.37 E. W. Washburn, International Critical Tables of Numerical Data, Physics, Chemistry and Technology (Knovel 2003), Volume IV.
4.1 S.- La, S.- Link and N.-J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641-648 (2007).
4.2 E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7, 334-337 (2007).
4.3 Ekmel Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
4.4 T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” App. Phys. Lett. 88, 061113(2006).
4.5 T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86 161904 (2005).
4.6 C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno and F.J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175-179 (2008).
4.7 W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16, 6216-6226 (2008).
4.8 F. J. G.-Vidal, L M.-Moreno and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97-S101(2005).
4.9 C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C.-Palacios, S. G. Rodrigo, F. J. G.-Vidal, and L. M.-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” App. Phys. Lett. 96, 011101 (2010).
4.10 A. I. Fernández-Domínguez, Esteban Moreno, L. Martín-Moreno, and F. J. García-Vidal1, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063-2065 (2009).
4.11 S. A. Maier, S. R. Andrews, L. M.-Moreno, and F. J. G.-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,”Phys. Rev. Lett. 97, 176805(2006).
4.12 L. Shen, X. Chen, and T.-J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16, 3326-3333 (2008).
4.13 M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun. 277, 33-39 (2007).
4.14 G. Gaborit, D. Armand, J.-L. Coutaz, M. Nazarov, and A. Shkurinov, “Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves,” Appl. Phys. Lett. 94, 231108 (2009).
4.15 L.S. Mukina, M.M. Nazarov, and A.P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci. 600, 4771-4776 (2006).
4.16 A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24, 1423-1429(2007).
4.17 M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi-mode waveguide coupled surface plasmons,” Sensors and Actuators B 56, 189–197 (1999).
4.18 A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6340-6351 (2008).
4.19 L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308-310 (2006).
4.20 C. Yeh, F. Shimabukuro, and P.-H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt. 44, 5937-5946 (2005).
4.21 R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449-4451(2000).
4.22 B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, and C.-L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” App. Phys. Lett. 96, 051105 (2010).
4.23 M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr. and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099-1120 (1983).
4.24 T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
4.25 J.-G. Rivas,M. Kuttge, P. H. Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
4.26 S. Hunsche, M. Koch, I. Brener, and M.C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22 (1998).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw