進階搜尋


下載電子全文  
系統識別號 U0026-2907202017323400
論文名稱(中文) 高性能Mo-SnO2/rGO複合材料應用於鋰離子電池負極之研究
論文名稱(英文) Mo-SnO2/rGO composite as high performance anode material for lithium ion batteries
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 黃永存
研究生(英文) Yong-Cun Huang
學號 N56071629
學位類別 碩士
語文別 中文
論文頁數 102頁
口試委員 指導教授-黃肇瑞
共同指導教授-張家欽
口試委員-劉全璞
口試委員-許文東
口試委員-林士剛
中文關鍵字 二氧化錫  還原氧化石墨烯  複合材料  摻雜  負極材料  鋰離子電池 
英文關鍵字 tin dioxide  reduced graphene oxide  composite  doping  anode  lithium ion battery 
學科別分類
中文摘要 本研究專注於使用形成複合材料和摻雜來改善二氧化錫的材料性質,二氧化錫成本低又容易取得,但卻因導電性差和體積變化問題導致電池循環性不佳,所以我們利用與還原氧化石墨烯複合來提高電化學表現,還原氧化石墨烯的機械強度高、導電性也較好,其層狀結構更能緩衝二氧化錫的體積膨脹效應。而摻雜鉬是希望進一步提升材料的導電性,使電化學性質更進一步。
摻雜鉬除了可以增加導電性以外,還可以增加二氧化錫和金屬錫之間的可逆性,充電時二氧化錫會和鋰離子反應形成金屬錫和氧化鋰,放電時如果可逆性差的話氧化鋰的氧會變成氧氣,而可逆性好的話,氧化鋰的氧會和金屬錫變回二氧化錫。
本研究使用簡易且低成本的製程合成Mo- SnO2/rGO複合材料,第一部分實驗藉由改變鉬前驅物的量發現5%Mo- SnO2/rGO是最好電化學表現,第一圈的充放電電容量分別是1194.7/871.6 mAh g-1,100圈以後放電電容量為758.1 mAh g-1。第二部分實驗則是繼續使用5%Mo- SnO2/rGO並且加入不同量的NaBH4當作還原劑來還原掉多餘的含氧官能基,發現加入0.06 mole NaBH4會有最好的電化學性質,從結果來看,5%Mo- SnO2/rGO加入0.06 mole NaBH4有最高的第一圈充放電電容量1217.2/954.7 mAh g-1,100圈以後放電電容量為875.0 mAh g-1。
英文摘要 The Molybdenum-Tin dioxide/reduced graphene oxide (Mo-SnO2/rGO) composite has been facilely synthesized through a simple chemical reduction method. It is shown that the Mo-SnO2 nanoparticles are homogeneously anchored onto rGO sheets. Mo adding can enhance the interfacial interaction between Mo-SnO2 nanocrystals and rGO sheets, and improve the electrical conductivity of the composite, which lead to the excellent electrochemical performance of Mo-SnO2/rGO composite. Moreover, Mo adding can facilitate the conversion reaction between Li2O and SnO2 during cycling, leading to the higher capacity than the theoretical capacity. Via electrochemical tests, the results shows that 5% Mo-SnO2/rGO has the best electrochemical performance corresponding to high capacity (1194/872 mAh/g at first cycle), good cycling stability about 89.1% retention (758.1 mAh/g after 100 cycles), high retention (93.8%) after fast charge/discharge.
論文目次 中文摘要 I
Extend absrtract II
致謝 XIII
總目錄 XV
表目錄 XIX
圖目錄 XX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 3
2.1 鋰離子電池的發展與應用 3
2.2 鋰離子電池的組成與工作原理 5
2.3 鋰離子電池負極材料介紹 8
2.3.1 碳材 8
2.3.2 鈦酸鋰(LTO) 8
2.3.4 矽負極與矽碳負極 8
2.3.5 錫材 9
2.4 錫基材料的問題 11
2.4.1 活性材的崩解 11
2.4.2 固態電解質介面膜的形成 12
2.5 負極材料的改質 14
2.6 在二氧化錫與還原氧化石墨烯複合材料摻雜其他元素應用於鋰離子電池負極材料之研究近況 16
2.6.1 在二氧化錫與還原氧化石墨烯複合材料摻雜其他元素 16
2.6.2 製備方法與其性能 17
2.6.3 以NaBH4還原氧化石墨烯 27
第三章 實驗方法與步驟 29
3.1 實驗材料 29
3.2 實驗設備 29
3.3 實驗設計 30
3.4 活性材料的製備 31
3.4.1 氧化石墨烯(Graphene oxide)的製備 31
3.4.2 Mo-SnO2/rGO複合材料製備方法 32
3.5 材料鑑定分析 34
3.5.1 X-ray繞射分析儀 (X-ray diffraction spectrometer:XRD) 34
3.5.2 高解析場發射掃描式電子顯微鏡 (High Resolution Field Emission Scanning Electron Microscopy:FE-SEM) 35
3.5.3 高解析分析電子顯微鏡 (Ultrahigh Resolution Analytical Electron Microscopy:HR-AEM) 36
3.5.4 拉曼光譜分析儀 (Raman spectroscopy:Raman) 37
3.5.5 傅立葉轉換紅外光譜 (Fourier-transform Infrared Spectroscopy: FTIR) 39
3.5.6 電子能譜化學分析儀 (Electron Spectroscopy for Chemical Analysis:ESCA) 40
3.6 鈕扣型半電池製備 41
3.6.1 負極極片製作 41
3.6.2 半電池組裝 42
3.7 半電池充放電測試 43
3.7.1 循環壽命測試 43
3.7.2 不同充放電速率測試 43
3.7.3 電化學阻抗測試 44
3.7.4 循環伏安法 46
第四章 結果與討論 47
4.1 不同Mo at.%的Mo-SnO2/rGO 47
4.1.1 活性材料分析 47
4.1.1.1 XRD分析 47
4.1.1.2 表面形貌與顯微結構的SEM與EDS分析 49
4.1.1.3 表面形貌與顯微結構的TEM分析 51
4.1.1.4 碳原子結構變化的拉曼分析 54
4.1.1.5傅立葉轉換紅外光譜分析 56
4.1.1.6 鍵結能貢獻與變化的ESCA分析 57
4.1.2 半電池電化學測試 61
4.1.2.1 前三圈充放電測試 61
4.1.2.2 循環壽命充放電測試 65
4.1.2.3 不同充放電速率測試(C-rate test) 67
4.1.2.4 交流阻抗分析測試 69
4.1.2.5 循環伏安法分析 71
4.2 不同NaBH4濃度的Mo- SnO2/rGO 73
4.2.1 活性材料的製備分析 73
4.2.1.1 XRD分析 73
4.2.1.2 表面形貌與顯微結構的SEM與EDS分析 74
4.2.1.3表面形貌與顯微結構的TEM分析 76
4.2.1.4 碳原子結構變化的拉曼分析 79
4.2.1.5傅立葉轉換紅外光譜分析 81
4.2.1.6鍵結能貢獻與變化的ESCA分析 82
4.2.2 半電池組裝與測試 85
4.2.2.1 前三圈充放電測試 85
4.2.2.2 循環壽命充放電測試 87
4.2.2.3 不同充放電循環測試 89
4.2.2.4 交流阻抗分析測試 91
4.2.2.5 循環伏安法分析 93
第五章 結論 95
附錄:鉬氧化物標準卡號 96
參考資料 97

參考文獻 [1] J. H. B. Scrosati, Y.K. Sun, "Lithium-ion batteries. A look into the future," Energy Environ. Sci. 4, pp. 3287-3295, 2011.
[2] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015.
[3] W. S. Taehoon Kim, † Dae-Yong Son, Luis K. Ono and a. Y. Qi, "Lithium-ion batteries outlook on present, future, and hybridized technologies," J. Mater. Chem. A, vol. 7, pp. 2942–2964, 2019.
[4] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy & Environmental Science, vol. 4, no. 9, 2011.
[5] M. Yoshio, H. Wang, and K. Fukuda, "Spherical carbon-coated natural graphite as a lithium-ion battery-anode material," Angew Chem Int Ed Engl, vol. 42, no. 35, pp. 4203-6, Sep 15 2003.
[6] J. Li, Y. Zhao, N. Wang, and L. Guan, "A high performance carrier for SnO2 nanoparticles used in lithium ion battery," Chem Commun (Camb), vol. 47, no. 18, pp. 5238-40, May 14 2011.
[7] Cen Wang, ‡ Yun Zhou,‡ Mingyuan Ge,†,‡ Xiaobin Xu,†,‡ Zaoli Zhang,§ and J. Z. Jiang2009, "," J. AM. CHEM. SOC, vol. 132, pp. 46–47 2010.
[8] M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, and H. K. Liu, "Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries," Angew Chem Int Ed Engl, vol. 46, no. 5, pp. 750-3, 2007.
[9] Y. Z. L. L. L. Sun, "Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries A review," Journal of Power Sources, vol. 274, pp. 869-884, 2015.
[10] Z. Li, Y. Wang, H. Sun, W. Wu, M. Liu, J. Zhou, G. Wu, and M. Wu, "Synthesis of nanocomposites with carbon–SnO2 dual-shells on TiO2 nanotubes and their application in lithium ion batteries," Journal of Materials Chemistry A, vol. 3, no. 31, pp. 16057-16063, 2015.
[11] Y. Chen, B. Song, R. M. Chen, L. Lu, and J. Xue, "A study of the superior electrochemical performance of 3 nm SnO2 nanoparticles supported by graphene," J. Mater. Chem. A, vol. 2, no. 16, pp. 5688-5695, 2014.
[12] C.-C. Hou, S. Brahma, S.-C. Weng, C.-C. Chang, and J.-L. Huang, "Facile, low temperature synthesis of SnO 2 /reduced graphene oxide nanocomposite as anode material for lithium-ion batteries," Applied Surface Science, vol. 413, pp. 160-168, 2017.
[13] M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, and T. Wang, "Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions," J. Mater. Chem., vol. 21, no. 6, pp. 1673-1676, 2011.
[14] J. Yao, X. Shen, B. Wang, H. Liu, and G. Wang, "In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries," Electrochemistry Communications, vol. 11, no. 10, pp. 1849-1852, 2009.
[15] C.-C. Hou, S. Brahma, S.-C. Weng, C.-C. Chang, and J.-L. Huang, "Multi-Layer Graphene/SnO2 Nanocomposites as Negative Electrode Materials for Lithium-Ion Batteries," Journal of Electrochemical Energy Conversion and Storage, vol. 17, no. 3, 2020.
[16] J. Liang, W. Wei, D. Zhong, Q. Yang, L. Li, and L. Guo, "One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries," ACS Appl Mater Interfaces, vol. 4, no. 1, pp. 454-9, Jan 2012.
[17] Y. Deng, C. Fang, and G. Chen, "The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review," Journal of Power Sources, vol. 304, pp. 81-101, 2016.
[18] J. Wang, L. Wang, S. Zhang, S. Liang, X. Liang, H. Huang, W. Zhou, and J. Guo, "Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries," Journal of Alloys and Compounds, vol. 748, pp. 1013-1021, 2018.
[19] H. Xu, L. Shi, Z. Wang, J. Liu, J. Zhu, Y. Zhao, M. Zhang, and S. Yuan, "Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability," ACS Appl Mater Interfaces, vol. 7, no. 49, pp. 27486-93, Dec 16 2015.
[20] Y. Liu, A. Palmieri, J. He, Y. Meng, N. Beauregard, S. L. Suib, and W. E. Mustain, "Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance," Sci Rep, vol. 6, p. 25860, May 11 2016.
[21] P. Zhao, W. Yue, Z. Xu, S. Sun, and H. Bao, "Graphene-based Pt/SnO2 nanocomposite with superior electrochemical performance for lithium-ion batteries," Journal of Alloys and Compounds, vol. 704, pp. 51-57, 2017.
[22] S. Wang, L. Shi, G. Chen, C. Ba, Z. Wang, J. Zhu, Y. Zhao, M. Zhang, and S. Yuan, "In Situ Synthesis of Tungsten-Doped SnO2 and Graphene Nanocomposites for High-Performance Anode Materials of Lithium-Ion Batteries," ACS Appl Mater Interfaces, vol. 9, no. 20, pp. 17163-17171, May 24 2017.
[23] X. Ye, W. Zhang, Q. Liu, S. Wang, Y. Yang, and H. Wei, "One-step synthesis of Ni-doped SnO2 nanospheres with enhanced lithium ion storage performance," New Journal of Chemistry, vol. 39, no. 1, pp. 130-135, 2015.
[24] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W.-W. Liu, and C. H. Voon, "Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence," Procedia Engineering, vol. 184, pp. 469-477, 2017.
[25] J. Rivera-Barrera, N. Muñoz-Galeano, and H. Sarmiento-Maldonado, "SoC Estimation for Lithium-ion Batteries: Review and Future Challenges," Electronics, vol. 6, no. 4, 2017.
[26] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles," Journal of Power Sources, vol. 226, pp. 272-288, 2013.
[27] B. Luo and L. Zhi, "Design and construction of three dimensional graphene-based composites for lithium ion battery applications," Energy & Environmental Science, vol. 8, no. 2, pp. 456-477, 2015.
[28] T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, "Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites," Energy Environ. Sci., vol. 7, no. 1, pp. 209-231, 2014.
[29] W. Qi, J. G. Shapter, Q. Wu, T. Yin, G. Gao, and D. Cui, "Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives," Journal of Materials Chemistry A, vol. 5, no. 37, pp. 19521-19540, 2017.
[30] R. Ruffo, C. Wessells, R. A. Huggins, and Y. Cui, "Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes," Electrochemistry Communications, vol. 11, no. 2, pp. 247-249, 2009.
[31] P. M. Do Kyung Kim, † Hyun-Wook Lee,† Riccardo Ruffo,‡ and C. K. C. Yuan Yang, | Hailin Peng,§ Robert A. Huggins,§ and Yi Cui, "Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes," American Chemical Society, vol. 8, 2008.
[32] Y. Zhang, C.-Y. Wang, and X. Tang, "Cycling degradation of an automotive LiFePO4 lithium-ion battery," Journal of Power Sources, vol. 196, no. 3, pp. 1513-1520, 2011.
[33] N. Spinner, L. Zhang, and W. E. Mustain, "Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM," J. Mater. Chem. A, vol. 2, no. 6, pp. 1627-1630, 2014.
[34] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist's perspective," Chem Soc Rev, vol. 38, no. 9, pp. 2565-75, Sep 2009.
[35] F. J. Petr NovaÂk, Martin Lanz, Jan-Christoph Panitz, RuÈdiger KoÈtz, , "The complex electrochemistry of graphite electrodes in lithium-ion batteries," Journal of Power Sources, vol. 97-98, pp. 39-46, 2001.
[36] M. Yoshio, H. Wang, K. Fukuda, T. Umeno, T. Abe, and Z. Ogumi, "Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphereElectronic supplementary information (ESI) available: colour versions of Figs. 6, 8 and 9. " Journal of Materials Chemistry, vol. 14, no. 11, 2004.
[37] J.-H. Lee, S. Lee, U. Paik, and Y.-M. Choi, "Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance," Journal of Power Sources, vol. 147, no. 1-2, pp. 249-255, 2005.
[38] W.-J. Zhang, "A review of the electrochemical performance of alloy anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, no. 1, pp. 13-24, 2011.
[39] A. R. K. a. D. J. Fray, "tin-based materials as advanced anode," Rev.Adv.Mater.Sci., vol. 27, pp. 14-24, 2011.
[40] L. Liu, F. Xie, J. Lyu, T. Zhao, T. Li, and B. G. Choi, "Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries," Journal of Power Sources, vol. 321, pp. 11-35, 2016.
[41] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life," Nano Lett, vol. 11, no. 7, pp. 2949-54, Jul 13 2011.
[42] Y. J. Mai, X. L. Wang, J. Y. Xiang, Y. Q. Qiao, D. Zhang, C. D. Gu, and J. P. Tu, "CuO/graphene composite as anode materials for lithium-ion batteries," Electrochimica Acta, vol. 56, no. 5, pp. 2306-2311, 2011.
[43] J. C. Park, J. Kim, H. Kwon, and H. Song, "Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials," Advanced Materials, vol. 21, no. 7, pp. 803-807, 2009.
[44] H. Guan, X. Wang, H. Li, C. Zhi, T. Zhai, Y. Bando, and D. Golberg, "CoO octahedral nanocages for high-performance lithium ion batteries," Chem Commun (Camb), vol. 48, no. 40, pp. 4878-80, May 18 2012.
[45] C. Ma, Y. Zhao, J. Li, Y. Song, J. Shi, Q. Guo, and L. Liu, "Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries," Carbon, vol. 64, pp. 553-556, 2013.
[46] H. Li, L. Shen, X. Zhang, J. Wang, P. Nie, Q. Che, and B. Ding, "Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: Superior anode materials for rechargeable lithium ion batteries," Journal of Power Sources, vol. 221, pp. 122-127, 2013.
[47] S.-H. Yu, A. Pucci, T. Herntrich, M.-G. Willinger, S.-H. Baek, Y.-E. Sung, and N. Pinna, "Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications," J. Mater. Chem., vol. 21, no. 3, pp. 806-810, 2011.
[48] Y. Tang, L. Yang, S. Fang, and Z. Qiu, "Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries," Electrochimica Acta, vol. 54, no. 26, pp. 6244-6249, 2009.
[49] B. Liang, Y. Liu, and Y. Xu, "Silicon-based materials as high capacity anodes for next generation lithium ion batteries," Journal of Power Sources, vol. 267, pp. 469-490, 2014.
[50] S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J. A. Stride, and S.-X. Dou, "Enhanced reversible lithium storage in a nanosize silicon/graphene composite," Electrochemistry Communications, vol. 12, no. 2, pp. 303-306, 2010.
[51] Q. Xu, J.-Y. Li, J.-K. Sun, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, "Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes," Advanced Energy Materials, vol. 7, no. 3, 2017.
[52] W. Li, Y. Tang, W. Kang, Z. Zhang, X. Yang, Y. Zhu, W. Zhang, and C. S. Lee, "Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes," Small, vol. 11, no. 11, pp. 1345-51, Mar 18 2015.
[53] W. Zhai, Q. Ai, L. Chen, S. Wei, D. Li, L. Zhang, P. Si, J. Feng, and L. Ci, "Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes," Nano Research, vol. 10, no. 12, pp. 4274-4283, 2017.
[54] D.-H. Lee, H.-W. Shim, J.-C. Kim, and D.-W. Kim, "Oleic-acid-assisted carbon coating on Sn nanoparticles for Li ion battery electrodes with long-term cycling stability," RSC Adv., vol. 4, no. 84, pp. 44563-44567, 2014.
[55] J. S. Chen and X. W. Lou, "SnO(2)-based nanomaterials: synthesis and application in lithium-ion batteries," Small, vol. 9, no. 11, pp. 1877-93, Jun 10 2013.
[56] X. Huang, X. Zhou, L. Zhou, K. Qian, Y. Wang, Z. Liu, and C. Yu, "A facile one-step solvothermal synthesis of SnO2/graphene nanocomposite and its application as an anode material for lithium-ion batteries," Chemphyschem, vol. 12, no. 2, pp. 278-81, Feb 7 2011.
[57] F. Han, W.-C. Li, M.-R. Li, and A.-H. Lu, "Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume," Journal of Materials Chemistry, vol. 22, no. 19, 2012.
[58] Y. Sun, N. Liu, and Y. Cui, "Promises and challenges of nanomaterials for lithium-based rechargeable batteries," Nature Energy, vol. 1, no. 7, 2016.
[59] V. A. Agubra and J. W. Fergus, "The formation and stability of the solid electrolyte interface on the graphite anode," Journal of Power Sources, vol. 268, pp. 153-162, 2014.
[60] J. Jo, S. Lee, J. Gim, J. Song, S. Kim, V. Mathew, M. H. Alfaruqi, S. Kim, J. Lim, and J. Kim, "Facile synthesis of reduced graphene oxide by modified Hummer's method as anode material for Li-, Na- and K-ion secondary batteries," R Soc Open Sci, vol. 6, no. 4, p. 181978, Apr 2019.
[61] 徐. 庄全超, 邱祥云, 崔永丽, 方亮, 孙世刚, "锂离子电池的电化学阻抗谱分析," PROGRESS IN CHEMISTRY, vol. 22, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw