進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2907202016475300
論文名稱(中文) 探討超音波振盪與空蝕作用而非使用鑽石晶種法預處理基板對鑽石成核的影響
論文名稱(英文) Effects of sonication and cavitation pretreatments on diamond nucleation without diamond seeding
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 108
學期 2
出版年 109
研究生(中文) 林宏晉
研究生(英文) Hung-Chin Lin
學號 Q16074079
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-曾永華
口試委員-洪茂峰
口試委員-盧達生
口試委員-許渭州
中文關鍵字 鑽石成核  超音波作用與空蝕作用  微波電漿化學氣象沉積 
英文關鍵字 diamond nucleation  sonication and cavitation effect  MPCVD 
學科別分類
中文摘要 鑽石成核於經由超音波振盪與空蝕作用而非使用鑽石晶種法預處理基板的方法,藉由微波電漿化學氣相沉積系統,空蝕作用溶液選用水、乙醇、乙二醇來進行超音波振盪基板,而超音波振盪則使用鉬粉、鎢粉、二氧化矽片來進行基板振盪預處理,所得之成核密度高達未處理的一千倍到一萬倍。
基板的製備是利用濺鍍機濺鍍薄膜於二氧化矽晶圓上,微波電漿化學氣相沉積系統主要是使用H_2-rich/CH_4氣體混合參數,CH_4濃度使用10%,腔體工作壓力設定95 Torr,基板溫度950-1050°C之間,實際鑽石製程時間為七分鐘使環境穩定並加熱基板,與清理基板表面,十五分鐘鑽石成核與成長,總共製程時間為二十二分鐘。
利用掃描式電子顯微鏡判斷與計算,以水進行空蝕作用二氧化矽晶圓先濺鍍鉻薄膜再濺鍍鉬銅合金薄膜之試片,可以使得鑽石成核密度超過〖10〗^8 〖 cm〗^(-2),超音波振盪作用基板預處理則平均得到之鑽石成核密度約為〖10〗^7 〖 cm〗^(-2)。藉由AFM量測預處理表面之表面粗糙度發現超音波振盪作用基板造成的表面粗糙度比起空蝕作用基板還大,但表面粗糙度越大,不一定擁有高成核密度。透過532nm綠光拉曼分析,探討超音波振盪與空蝕作用所設計的三種基板,鑽石特徵峰落在1335〖 cm〗^(-1)左右,伴隨著鑽石缺陷、非鑽石相之D-band與G-band以及TPA訊號。
超音波振盪與空蝕作用而非使用鑽石晶種法預處理基板的方法詳細機制尚未明朗,但是大概是使表面缺陷,製造表面粗糙度所致,兩種預處理的方法好處在於操作簡單、成本低廉,且不需要使用鑽石晶種法與偏壓法即可達到高成核密度。
英文摘要 Diamond nucleation on the substrates pre-treated by sonication and cavitation effects without diamond seeding methods by microwave plasma chemical vapor deposition can increase the diamond nucleation density by more than three to four orders magnitude from that of non-treated substrates. In order to do the experiment of sonication and cavitation effects, choosing water, alcohol, Ethylene Glycol for cavitation and Mo powder, W powder, SiO2 flakes for sonication to test the effects by those methods is the key step for the substrate pretreatments. Diamond nucleation of the water cavitation pretreatment samples which are first sputtered chromium thin film, then sputtered MoCu thin film can make the diamond nucleation density exceed 〖10〗^8 〖 cm〗^(-2), besides, sonication pretreatment samples can reach about 〖10〗^7 〖 cm〗^(-2). Surface roughness treated by the sonication effect is greater than the cavitation effect, but the greater the surface roughness, it does not necessarily have a higher nucleation density.
論文目次 摘要 I
Abstract II
致謝 XVI
目錄 XVII
表目錄 XX
圖目錄 XXII
第一章 緒論 1
1.1前言 1
1.2鑽石簡介 1
1.2.1鑽石特性 3
1.2.2鑽石薄膜簡介 4
1.2.2.1 微米多晶鑽石薄膜(Microcrystalline Diamond Films,MCD) 5
1.2.2.2 奈米多晶鑽石薄膜(Nanocrystalline Diamond Films, NCD) 5
1.2.2.3 超奈米多晶鑽石薄膜(Ultrananocrystalline Diamond Films, UNCD) 6
第二章 文獻回顧與理論基礎 7
2.1化學氣相沉積(CVD)原理 7
2.2 CVD 鑽石薄膜製程原理 8
2.3 CVD鑽石薄膜成核機制 8
2.3.1 均質成核(Homogeneous Nucleation-Gas-Phase Nucleation) 9
2.3.2 異質成核(Heterogeneous Nucleation-Surface Nucleation) 9
2.3.3 成核於中間層(Nucleation on Intermediate Layer)之機制 10
2.3.3.1 成核於類鑽非晶碳(Diamond-like Amorphous Carbon) 10
2.3.3.2 成核於金屬碳化物(Metal Carbide) 11
2.3.3.3 成核於石墨(Graphite) 11
2.4 CVD鑽石薄膜成長機制 13
2.5 製程參數對CVD鑽石薄膜的影響 15
2.5.1 製程氣體 15
2.5.2 基板溫度 19
2.5.3 製程壓力 19
2.6 常見CVD鑽石薄膜製備方法 21
2.6.1 熱燈絲化學氣相沉積法(Hot Filament CVD) 21
2.6.2 電漿輔助化學氣相沉積法(Plasma-Assisted CVD) 22
2.6.2.1 微波電漿輔助化學氣相沉積法(Microwave Plasma-Assisted CVD) 22
2.6.2.2 直流電漿輔助化學氣相沉積法(Direct-Current Plasma-Assisted CVD) 23
2.6.2.3 射頻電漿輔助化學氣相沉積法(RF Plasma-Assisted CVD) 24
2.6.4 火焰燃燒化學氣相沉積法(Flame CVD) 24
2.7 表面預處理的方法與提高鑽石成核密度的機制 25
2.7.1 機械式拋磨法(Mechanical Scratching)與其成核機制 26
2.7.2 種晶法(Seeding)或是超音波震盪法(Ultrasonic particle treatment)與其成核機制 27
2.7.3 偏壓法(Biasing)與其成核機制 27
第三章 實驗流程與儀器設備介紹 31
3.1 實驗耗材 31
3.2 實驗流程圖 35
3.2.1 基板清洗 36
3.2.2 超音波細胞粉碎儀(Probe Sonicator) 36
3.3 製程設備 37
3.3.1 射頻磁控電漿濺鍍系統(RF magnetron Sputtering system) 37
3.3.2 微波電漿輔助化學氣相沉積系統(MPCVD) 38
3.4 製程監控與分析量測設備 41
3.4.1 製程監控設備 41
3.4.1.1雙波長光學溫度計(Dual Wavelength Pyrometer) 41
3.4.1.2 分光光譜儀(Optical Emission Spectroscopy,OES) 42
3.4.2 量測與分析設備 43
3.4.2.1 光學顯微鏡(OM) 43
3.4.2.2 拉曼光譜儀(Raman Spectroscope) 44
3.4.2.3 原子力顯微鏡(Atomic Force Microscope, AFM) 45
3.4.2.4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 46
3.4.2.5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 47
3.4.2.6聚焦離子束顯微鏡(Focused Ion Beam Microscope, FIB) 48
第四章 實驗結果與討論 50
4.1 Seki舊載台實驗 50
4.1.1 多層薄膜濺鍍於SiO2晶圓上之鑽石成核 51
4.1.2 鎢箔鑽石成核 55
4.1.3 鉬薄膜鑽石成核 58
4.2 Seki舊載台實驗各類基板開始嘗試提升鑽石成核密度的方法 60
4.2.1 機械拋磨法預處理銅薄膜之鑽石成核 61
4.2.2 sonication and cavitation effect預處理薄膜之鑽石成核 64
4.2.2.1 水之cavitation effect預處理薄膜之鑽石成核 64
4.2.2.2 SiO2 flake之sonication effect預處理薄膜之鑽石成核 73
SiO2晶圓上濺鍍多層薄膜之鑽石成核 73
4.3 Seki新載台實驗各類基板開始嘗試提升鑽石成核密度的方法 81
4.3.1 鑽石種晶法(Diamond Seeding) 82
4.3.2 A、B、C三種基板未經預處理之討論 85
第五章 結論與未來展望 105
第六章 參考文獻 107
參考文獻 [1] D. Das and R. N. Singh, "A review of nucleation, growth and low temperature synthesis of diamond thin films," International Materials Reviews, vol. 52, no. 1, pp. 29-64, 2013.
[2] A. Hirsch, "The era of carbon allotropes," Nat Mater, vol. 9, no. 11, pp. 868-71, Nov 2010.
[3] J. J. Gracio, Q. H. Fan, and J. C. Madaleno, "Diamond growth by chemical vapour deposition," Journal of Physics D: Applied Physics, vol. 43, no. 37, 2010.
[4] J. C. Angus, "Diamond and diamond-like films," Thin Solid Films, vol. 216, no. 1, pp. 126-133, 1992/08/28/ 1992.
[5] S. T. Lee, Z. Lin, and X. Jiang, "CVD diamond films: nucleation and growth," Materials Science and Engineering: R: Reports, vol. 25, no. 4, pp. 123-154, 1999/07/30/ 1999.
[6] E. Monroy, F. Omnes, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors," (in English), Semicond. Sci. Technol., Review vol. 18, no. 4, pp. R33-R51, Apr 2003, Art no. Pii s0286-1272(03)35959-0.
[7] H. O. Pierson, "Handbook of carbon, graphite, diamond, and fullerenes : properties, processing, and applications," 1993.
[8] J. A. Montes-Gutiérrez et al., "Afterglow, thermoluminescence and optically stimulated luminescence characterization of micro-, nano- and ultrananocrystalline diamond films grown on silicon by HFCVD," Diamond and Related Materials, vol. 85, pp. 117-124, 2018/05/01/ 2018.
[9] J. E. Butler and A. V. Sumant, "The CVD of nanodiamond materials," Chemical Vapor Deposition, vol. 14, no. 7‐8, pp. 145-160, 2008.
[10] K. L. Choy, "Chemical vapour deposition of coatings," Progress in Materials Science, vol. 48, no. 2, pp. 57-170, 2003/01/01/ 2003.
[11] M. Frenklach et al., "Homogeneous Nucleation of Diamond Powder in the Gas Phase," Journal of Applied Physics, vol. 66, pp. 395-399, 08/01 1989.
[12] P. Ascarelli and S. Fontana, "Analysis and modeling of diamond heterogeneous nucleation kinetics," Diamond and Related Materials, vol. 2, no. 5-7, pp. 990-996, 1993.
[13] L. Kostadinov, D. Dobrev, K. Okano, T. Kurosu, and M. Iida, "Nucleation and growth of diamond particles from the vapor phase," Diamond and Related Materials, vol. 1, no. 2-4, pp. 157-160, 1992.
[14] C. N. Nanev, "7 - Theory of Nucleation," in Handbook of Crystal Growth (Second Edition), T. Nishinaga Ed. Boston: Elsevier, 2015, pp. 315-358.
[15] P. O. Joffreau, R. Haubner, and B. Lux, "Low-pressure diamond growth on refractory metals," International Journal of Refractory Metals and Hard Materials, vol. 7, pp. 186-194, 12/01 1988.
[16] H. Liu and D. S. Dandy, "Studies on nucleation process in diamond CVD: an overview of recent developments," Diamond and Related Materials, vol. 4, no. 10, pp. 1173-1188, 1995/09/01/ 1995.
[17] J. Singh and M. Vellaikal, "Nucleation of diamond during hot filament chemical vapor deposition," Journal of applied physics, vol. 73, no. 6, pp. 2831-2834, 1993.
[18] D. Das and R. Singh, "A review of nucleation, growth and low temperature synthesis of diamond thin films," International Materials Reviews, vol. 52, no. 1, pp. 29-64, 2007.
[19] W. R. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, "Diamond nucleation by hydrogenation of the edges of graphitic precursors," Nature, vol. 364, no. 6438, pp. 607-610, 1993.
[20] C. Chang, Y. Liao, G. Z. Wang, Y. R. Ma, and R. C. Fang, "4 - CVD Diamond Growth," in Crystal Growth Technology, K. Byrappa, T. Ohachi, W. Michaeli, H. Warlimont, and E. Weber Eds. Norwich, NY: William Andrew Publishing, 2003, pp. 93-141.
[21] M. P. D’Evelyn, J. D. Graham, and L. R. Martin, "[100] versus [111] diamond growth from methyl radicals and/or acetylene," Journal of Crystal Growth, vol. 231, no. 4, pp. 506-519, 2001/10/01/ 2001.
[22] R. C. Mani and M. K. Sunkara, "Kinetic faceting of multiply twinned diamond crystals during vapor phase synthesis," Diamond and Related Materials, vol. 12, no. 3, pp. 324-329, 2003/03/01/ 2003.
[23] V. Ralchenko et al., "Quality of diamond wafers grown by microwave plasma CVD: effects of gas flow rate," Diamond and Related Materials, vol. 8, no. 2, pp. 189-193, 1999/03/01/ 1999.
[24] H. Sternschulte, T. Bauer, M. Schreck, and B. Stritzker, "Comparison of MWPCVD diamond growth at low and high process gas pressures," Diamond and Related Materials, vol. 15, no. 4, pp. 542-547, 2006/04/01/ 2006.
[25] K.-L. Chuang, L. Chang, and C.-A. Lu, "Diamond nucleation on Cu by using MPCVD with a biasing pretreatment," Materials Chemistry and Physics, vol. 72, no. 2, pp. 176-180, 2001/11/01/ 2001.
[26] X. Li, J. Perkins, R. Collazo, R. J. Nemanich, and Z. Sitar, "Investigation of the effect of the total pressure and methane concentration on the growth rate and quality of diamond thin films grown by MPCVD," Diamond and Related Materials, vol. 15, no. 11, pp. 1784-1788, 2006/11/01/ 2006.
[27] N. N. Naguib et al., "Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers," Chemical Physics Letters, vol. 430, no. 4-6, pp. 345-350, 2006.
[28] A. R. Badzian and R. C. DeVries, "Crystallization of diamond from the gas phase; Part 1," Materials Research Bulletin, vol. 23, no. 3, pp. 385-400, 1988/03/01/ 1988.
[29] C.-F. Chen, S.-H. Chen, H.-W. Ko, and S. E. Hsu, "Low temperature growth of diamond films by microwave plasma chemical vapor deposition using CH4 +CO2 gas mixtures," Diamond and Related Materials, vol. 3, no. 4, pp. 443-447, 1994/04/01/ 1994.
[30] S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, "Vapor Deposition of Diamond Particles from Methane," Japanese Journal of Applied Physics, vol. 21, no. Part 2, No. 4, pp. L183-L185, 1982/04/20 1982.
[31] X. Wang, T. Zhao, F. Sun, and B. Shen, "Comparisons of HFCVD diamond nucleation and growth using different carbon sources," Diamond and Related Materials, vol. 54, pp. 26-33, 2015/04/01/ 2015.
[32] Z. Yu and A. Flodström, "Pressure dependence of growth mode of HFCVD diamond," Diamond and Related Materials, vol. 6, no. 1, pp. 81-84, 1997/01/01/ 1997.
[33] M. Schwander and K. Partes, "A review of diamond synthesis by CVD processes," Diamond and Related Materials, vol. 20, no. 9, pp. 1287-1301, 2011/10/01/ 2011.
[34] M. Maschmann, T. Fisher, and P. Amama, "Enhanced Control of Single-Walled Carbon Nanotube Properties Using MPCVD with DC Electrical Bias," 2011.
[35] E. Vaghri, Z. Khalaj, and M. Ghoranneviss, "Preparation and characterization of diamond-like carbon films on various substrates by PECVD system," Studia Universitatis Babes-Bolyai Chemia, vol. 3, pp. 143-150, 09/03 2012.
[36] A. B. Suriani et al., "Hydrogenated Amorphous Carbon Films," vol. 5, 2010, pp. 79-99.
[37] H. O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. William Andrew, 2012.
[38] T.-S. Chen, S.-E. Chiou, and S.-T. Shiue, "The effect of different radio-frequency powers on characteristics of amorphous boron carbon thin film alloys prepared by reactive radio-frequency plasma enhanced chemical vapor deposition," Thin Solid Films, vol. 528, pp. 86–92, 01/15 2013.
[39] M. Vilotijevic, G. Nebojsa, M. Ljiljana, and M. Slobodan, "Chemical vapour deposition of diamond using low pressure flat combustion flame," Journal of the Serbian Chemical Society, vol. 71, 02/01 2006.
[40] Y. Gurbuz, O. Esame, I. Tekin, W. P. Kang, and J. L. Davidson, "Diamond semiconductor technology for RF device applications," Solid-State Electronics, vol. 49, no. 7, pp. 1055-1070, 2005/07/01/ 2005.
[41] W. A. Yarbrough and R. Messier, "Current issues and problems in the chemical vapor deposition of diamond," Science, vol. 247, no. 4943, pp. 688-696, 1990.
[42] H. Makita, K. Nishimura, N. Jiang, A. Hatta, T. Ito, and A. Hiraki, "Ultrahigh particle density seeding with nanocrystal diamond particles," Thin Solid Films, vol. 281-282, pp. 279-281, 1996/08/01/ 1996.
[43] R. M. De Barros et al., "Dispersion liquid properties for efficient seeding in CVD diamond nucleation enhancement," Diamond and related Materials, vol. 5, no. 11, pp. 1323-1332, 1996.
[44] M. J. Chiang and M. H. Hon, "Positive dc bias-enhanced diamond nucleation with high CH4 concentration," Diamond and Related Materials, vol. 10, no. 8, pp. 1470-1476, 2001/08/01/ 2001.
[45] B. R. Stoner, G. H. M. Ma, S. D. Wolter, and J. T. Glass, "Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy," Physical Review B, vol. 45, no. 19, pp. 11067-11084, 05/15/ 1992.
[46] M. Katoh, M. Aoki, and H. Kawarada, "Plasma-Enhanced Diamond Nucleation on Si," Japanese Journal of Applied Physics, vol. 33, no. Part 2, No. 2A, pp. L194-L196, 1994/02/01 1994.
[47] J.-C. Arnault, S. Saada, L. Intiso, and P. Bergonzo, "The effects of Methane Concentration on diamond nucleation and growth during bias enhanced nucleation on 3C-SiC(100) surfaces," MRS Proceedings, vol. 956, 01/01 2006.
[48] E. C. Tupper, "Chapter 8 - Propulsion," in Introduction to Naval Architecture (Fifth Edition), E. C. Tupper Ed. Oxford: Butterworth-Heinemann, 2013, pp. 161-203.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw