進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2907201918452200
論文名稱(中文) 薄膜厚度與探針下壓速度對雙層結構之彈性模數的影響
論文名稱(英文) Effect of thin film thickness and probe indentation velocity on the elastic modulus of bilayer structure
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳科毓
研究生(英文) Ke-Yu Chen
學號 N56061640
學位類別 碩士
語文別 中文
論文頁數 148頁
口試委員 指導教授-劉浩志
口試委員-郭瑞昭
口試委員-許文東
口試委員-呂正傑
中文關鍵字 AFM nanoindentation  彈性模數  力學模型  黏滯性影響  基板效應  薄膜厚度 
英文關鍵字 AFM Nanoindentation  Elastic Modulus  Mechanical Model  Viscosity Effect  Substrate Effect  Film Thickness 
學科別分類
中文摘要 奈米壓痕測試是能夠方便且快速量測物品機械性質的方式之一,為了避免粗糙度及基板效應所造成的誤差,會根據經驗法則將下壓的深度控制在一定的區間內,但隨著微小化的趨勢,能夠準確量測的範圍變得更小,控制上也有一定的難度,在生醫方面,準確量測微小生物試片的彈性模數也是一直存在的難題,因為傳統的NI對於軟性的試片容易破壞試片表面,而在細胞膜、細胞壁……等雙層結構的部分,由於膜厚非常的小,層跟層之間的介面也難以界定,想要再將下壓的深度控制在準確的範圍內更加不可能。
為了能夠將本研究的成果,運用於生醫方面的分析,奈米壓痕的儀器選用近年來也被廣泛運用於細胞學中的AFM技術,利用AFM對單點進行敲打,做出與NI相同的壓痕效果,但有別於NI的垂直式下壓,AFM的探針在敲打時,懸臂樑會產生偏折,不容易造成試片表面的傷害。而本研究主要討論不同的薄膜厚度以及探針下壓的速度,對薄膜的彈性模數所造成的影響,因此實驗使用的參數不會只控制在經驗法則所提供的量測範圍內,並藉由彈性模數與下壓深度曲線觀察整體彈性模數的趨勢變化。
力學模型的選擇是本研究中非常重要的環節,需要將力-位移曲線轉換成正確的彈性模數-下壓深度曲線才能進行後續的討論,由於AFM的探針會產生偏折且下壓的深度受限於機台本身,因此不考慮試片會有塑性變形,以彈性的力學模型為主,而以往選擇模型會根據使用探針的形狀去判斷,但這樣的方式並不完全正確,應該以探針下壓過程中,探針壓入試片的部分為選擇的依據,以本研究使用的錐狀探針為例,探針並不是完美的錐狀,針尖前端較鈍,接近圓球狀,因此提出以針尖的曲率半徑作為力學模型選擇的標準。
選擇合適的力學模型,將力-位移曲線轉換成彈性模數曲線後,能夠發現在曲線中會有不穩定的部分,但為了資料結果的一致性以及分析上的便利性,本研究自行定出PMMA以下壓深度2 nm、PVA以下壓深度3 nm及PDMS以下壓深度10 nm作為曲線的起始點,透過分析與粗糙度之間的關聯性,提出了曲線的起始點與粗糙度具有高度的相關性,也就是說曲線的不穩定是由於試片表面的高低起伏造成,探針下壓時會先碰觸到凸起的部分導致施力不穩,隨著探針繼續下壓,能夠與試片表面均勻的貼合,便不會再受到粗糙度的影響。
彈性模數屬於內部物理量,不會因為外在的因素變化而產生改變,所以彈性模數曲線應該是一條水平線,但在本研究中的彈性模數曲線並不是一條水平線,會受到黏彈性及基板效應的影響,在曲線中的水平線段能對應於經驗法則所要量測的範圍,獲得準確的薄膜彈性模數,將影響彈性模數的因素忽略。
探針在下壓的過程中,試片表面會產生凹入的變形行為,但由於材料的黏彈性使得變形無法及時回復,造成計算彈性模數時會被低估,因此彈性模數曲線呈現下降的趨勢,本研究藉著調整不同的下壓速度,針對黏彈性的影響進行討論,當下壓速度為7.38和10 nm/s時,兩者的彈性模數曲線幾乎重疊,且都呈現上升的趨勢,表示下壓速度足夠緩慢時,表面的變形能夠完全回復,避免黏彈性造成的影響,但被保留的基板效應則會使曲線的趨勢上升,而當下壓速度夠快,黏彈性的影響會遠大於基板效應的影響,便能夠直接使用三元件模型預估彈性模數的數值。
在避免黏彈性的影響後,本研究繼續針對基板效應做討論,基板效應與薄膜厚度有所關聯,當薄膜厚度越薄受到基板的影響會越大,更進一步提出,在不同薄膜厚度但相同的薄膜中,基板效應的影響差異會與薄膜厚度的差成比例關係,雖然不同的薄膜,依然會遵守薄膜越薄,基板影響越大的關係,但卻沒有這樣的比例關聯。
本研究也將玻璃基板換成較軟的PDMS基板進行量測,與硬基板的彈性模數曲線不同,軟基板在量測的過程中,都會受到基板效應的影響且無法忽略,因此整體的彈性模數會比薄膜的彈性模數還低,隨著下壓深度加深,曲線逐漸上升,但最大值並不會超過薄膜本身的彈性模數,也因為這樣的趨勢關係,曲線中並沒有水平線段,因此為了避免不穩定的部分,曲線的起始點必須採用硬基板所定出的位置。最後本研究透過對下壓速度與黏彈性、薄膜厚度與基板效應及不同基材與彈性模數變化的討論,將影響彈性模數的因素互相連結,精確的預估不同參數下的彈性模數,藉此判斷量測的結果是否準確,而對於雙層結構的上層薄膜也能夠獲得其精確的彈性模數。
英文摘要 AFM has great potential for accurate measurement of mechanical properties and materials identification, and has also been widely used in cell biology to measure mechanical properties of cells. However, to measure cell elastic modulus accurately is still a challenging task. Therefore, cell membrane, cell wall and other forms of bilayer structure are used as a reference in this study to explore the effect that film thickness and indentation velocity have on the modulus of bilayer structure. Firstly, an appropriate contact model would be selected in this study for fitting, and force-distance curve would be converted into modulus-indentation depth curve for analysis. The modulus curve would be affected by the roughness of materials, which as a result makes the curve unstable. However, for the convenience of analysis process and the consistency of the results, the correlation between the modulus curve and roughness would be established, and the starting point of the curve will be re-defined to remove the instability in the curve. The modulus of films could be obtained accurately from the horizontal line of the modulus curve. In addition, the horizontal line corresponds with the measurement range proposed by the empirical law; thus, the factors that affect the modulus could therefore be omitted. However, when the indentation depth increases, the modulus curve no longer maintains horizontal, and the effect that causes by substrate effect and the viscoelasticity of materials should be factored in. Since the viscoelasticity of materials would cause concave deformation on the surface of the sample, the calculation of modulus would turn out to be lower if not enough time is given to recover. Therefore, different indentation velocities are applied in this study to explore the effect that time has on viscoelasticity, and to avoid the miscalculation caused by viscoelasticity. Viscoelasticity, however, is not the sole factor that affects the change in modulus. Modulus is affected by substrate effect as well. As there is


correlation between substrate effect and film thickness, films of different thickness are adapted in this study to establish the connection between substrate effect and film thickness. Substrates with different levels of hardness are also used to explore the change in the trend of modulus. Finally, the correlation of indentation velocity, viscoelasticity, film thickness, substrate effect, different substrate and the change in modulus is built in this study to estimate the film modulus accurately, and to confirm the correctness of the result of measurement.
論文目次 第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 文獻回顧 5
2-1 材料-高分子化合物 5
2.1.1聚二甲基矽氧烷 5
2.1.2 聚甲基丙烯酸甲酯 7
2.1.3 聚乙烯醇 8
2-2 儀器-原子力顯微鏡(AFM)基本原理及介紹 9
2.2.1 接觸式(Contact mode) 10
2.2.2 非接觸式(Non-contact mode) 11
2.2.3 輕敲式(Tapping mode) 11
2-3 儀器-奈米壓痕試驗 12
2.3.1 奈米壓痕試驗機(Nanoindenter) 12
2.3.2 原子力顯微鏡奈米壓痕試驗(AFM Nanoindenter) 13
2-4 理論-接觸力學(contact mechanics) 14
2.4.1 Hertz 14
2.4.2 Sneddon 16
2.4.3 Johnson、Kendall和Roberts 17
2.4.4 Oliver and Pharr 17
2-5 理論-雙層薄膜(Bilayer) 19
第三章 實驗方法與與實驗架構 21
3-1 實驗流程圖 21
3-2 實驗方法 22
3.2.1 材料製備 22
3.2.2 奈米壓痕試驗的量測 24
第四章 結果與討論 31
4-1 雙層結構之薄膜壓痕分析 31
4-1-1 PMMA厚度量測 32
4-1-2 PDMS 厚度量測 35
4-1-3 PVA 厚度量測 36
4-2 薄膜機械性質的分析 37
4.2.1 AFM探針 37
4.2.2 硬基板-PMMA薄膜 40
4.2.3 硬基板-PVA薄膜 60
4.2.4 硬基板-PDMS薄膜 67
4.2.5 彈性模數與下壓深度之曲線 74
4.2.6 討論-硬基板 91
4.2.7 黏彈性變形 96
4.2.8 PDMS軟基板-PMMA薄膜 131
第五章 結論 138
第六章 未來展望 140
參考文獻 141
參考文獻 [1] 張瑞慶, "奈米壓痕技術與應用." 聖約翰科技大學, 2006.
[2] JY Kim, SK Kang, JJ Lee, J Jang, YH Lee, D Kwon, "Influence of surface-roughness on indentation size effect." Acta materialia, 2007.
[3] Saha, Ranjana, and William D. Nix. "Effects of the substrate on the determination of thin film mechanical properties by nanoindentation." Acta materialia, 2002.
[4] Chang, Alice Chinghsuan, and Bernard Haochih Liu. "Modified flat-punch model for hyperelastic polymeric and biological materials in nanoindentation." Mechanics of Materials, 2018.
[5] Shih-Jia Shen, and Bernard Haochih Liu. " Accurate micro and nano scale measurements of mechanical properties for homogeneous and heterogeneous viscoelastic thin films." Mechanics of Materials, 2018.
[6] Rotsch, Christian, and Manfred Radmacher. "Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study." Biophysical journal, 2000.
[7] Barbee, Kenneth A., Peter F. Davies, and Ratneshwar Lal. "Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy." Circulation research, 1994.
[8] 叶志义, 张丽, and 范霞. "DAPI 染色对 A549 肺癌细胞弹性模量的影响." 中国细胞生物学学报, 2010.
[9] Sarah E. Cross, Yu-Sheng Jin, Jianyu Rao and James K. Gimzewski. "Nanomechanical analysis of cells from cancer patients." Nature nanotechnology, 2007.

[10] Ju-Young Kim, Jung-Jun Lee, Yun-Hee Lee, Jae-il Jang and Dongil Kwon "Surface roughness effect in instrumented indentation: A simple contact depth model and its verification." Journal of materials research, 2006.
[11] Tsui, T. Y., and G. M. Pharr. "Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates." Journal of Materials Research, 1999.
[12] RM Hochmuth, CA Evans, HC Wiles, JT McCown. "Mechanical measurement of red cell membrane thickness." Science, 1983.
[13] Notbohm, Jacob, Benny Poon, and Guruswami Ravichandran. "Analysis of nanoindentation of soft materials with an atomic force microscope." Journal of materials research, 2012.
[14] Nolte, Adam J., Michael F. Rubner, and Robert E. Cohen. "Determining the Young's modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities." Macromolecules, 2005.
[15] K Khanafer, A Duprey, M Schlicht, R Berguer. "Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications." Biomedical microdevices, 2009.
[16] Fernando Carrillo, Shikha Gupta, Mehdi Balooch, Sally J. Marshall, Grayson W. Marshall, Lisa Pruitt and Christian M. Puttlitz. "Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus." Journal of materials research, 2005.
[17] Ebenstein, Donna M. "Nano-JKR force curve method overcomes challenges of surface detection and adhesion for nanoindentation of a compliant polymer in air and water." Journal of Materials Research, 2011.
[18] Gray, Darren S., Joe Tien, and Christopher S. Chen. "Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus." Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials ,2003.
[19] Manoj K Chaudhury, John A Finlay, Jun Young Chung, Maureen E Callow and James A Callow. "The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly (dimethylsiloxane)(PDMS) model networks." Biofouling, 2005.
[20] Tao Jin, Zhiwei Zhou, Zhenguo Liu, Gesheng Xiao, Guozheng Yuan and Xuefeng Shu. "Sensitivity of PMMA nanoindentation measurements to strain rate." Journal of Applied Polymer Science, 2015.
[21] Jee, Ah-Young, and Minyung Lee. "Comparative analysis on the nanoindentation of polymers using atomic force microscopy." Polymer Testing, 2010.
[22] Christopher M. Stafford, Bryan D. Vogt, Christopher Harrison, Duangrut Julthongpiput and Rui Huang. "Elastic moduli of ultrathin amorphous polymer films." Macromolecules, 2006.
[23] D.L.P. Lacerda, F. Ptak and R. Prioli. "Nanomechanical characterization of porous materials by atomic force microscopy." MRS Advances, 2018.
[24] Angela Strojny, Xinyun Xia, Andy Tsou and William W. Gerberich. "Techniques and considerations for nanoindentation measurements of polymer thin film constitutive properties." Journal of adhesion science and technology, 1998.
[25] I.D. Simonov-Emel'yanov, K.V. Shirshin, P.V. Motsinov and S.V. Vlasov. "The influence of molecular weight on the orientation and properties of polymethyl methacrylate sheets." International Polymer Science and Technology, 2018.
[26] T.J. Young, M.A. Monclus, T.L. Burnett, W.R. Broughton1, S.L. Ogin and P.A. Smith. "The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young's modulus measurement of polymers." Measurement Science and Technology, 2011.
[27] Jooyoung Chang, Kamil B. Toga,Joseph D. Paulsen, Narayanan Menon and Thomas P. Russell. "Thickness Dependence of the Young’s Modulus of Polymer Thin Films." Macromolecules, 2018.
[28] El-Shamy, Ahmed Gamal. "Composite (PVA/Cu nano) films: Two yield points, embedding mechanism and thermal properties." Progress in Organic Coatings, 2019.
[29] Wei Chen, Xiaoming Tao, Pu Xue and Xiaoyin Cheng. "Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films." Applied Surface Science, 2005.
[30] Kim, Dae-Hyeong, et al. "Epidermal electronics." Science, 2011.
[31] Němeček, Jiří. "Nanoindentation applied to materials with an inner structure." Key Engineering Materials, 2014.
[32] Lu, Jue, Tao Wang, and Lawrence T. Drzal. "Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials." Composites Part A: Applied Science and Manufacturing, 2008.
[33] Yuxi Xu, Wenjing Hong, Hua Bai, Chun Li and GaoquanShi. "Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure." Carbon, 2009.
[34] G. Zeng, Y. Duan, F. Besenbacher, and M. Dong. "Nanomechanics of Amyloid Materials Studied by Atomic Force Microscopy." Atomic Force Microscopy Investigations into Biology-From Cell to Protein, 2012.
[35] Meyer, Gerhard, and Nabil M. Amer. "Novel optical approach to atomic force microscopy." Applied physics letters, 1988.
[36] 黃英碩, "掃描探針顯微術的原理及應用." 中央研究院物理研究所, 2005.
[37] Eaton, Peter, and Paul West. "Atomic force microscopy. " Oxford university press, 2010.
[38] Sneddon, Ian N. "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile." International journal of engineering science, 1965.
[39] H. Ashrafi1 and M. Shariyat. "A nano-indentation identification technique for viscoelastic constitutive characteristics of periodontal ligaments." Journal of biomedical physics and engineering, 2016.
[40] Oliver, Warren Carl, and George Mathews Pharr. "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments." Journal of materials research, 1992.
[41] Wiesendanger, Roland, and Wiesendanger Roland. "Scanning probe microscopy and spectroscopy: methods and applications." Cambridge university press,1994.
[42] Chang, Alice Chinghsuan, and Bernard Haochih Liu. "Modified flat-punch model for hyperelastic polymeric and biological materials in nanoindentation." Mechanics of Materials, 2018.
[43] Hertz, Heinrich. "Hertz." Miscellaneous papers.” Transiated by De Jonesand Ga, Schott, Macimillan, New York, 1896.
[44] Johnson, Kenneth Langstreth, Kevin Kendall and A.D. Roberts. "Surface energy and the contact of elastic solids." Proceedings of the royal society of London. A. mathematical and physical sciences, 1971.
[45] Ranjana Saha, Zhenyu Xue, Young Huang and William D.Nix. "Indentation of a soft metal film on a hard substrate: strain gradient hardening effects." Journal of the Mechanics and Physics of Solids, 2001.
[46] S. Suresh, T.-G. Nieh and B.W. Choi. "Nano-indentation of copper thin films on silicon substrates." Scripta Materialia, 1999.
[47] A.K. Bhattacharya and W.D.Nix. "Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates." International Journal of Solids and Structures, 1988.
[48] T. Y. Tsui, Joost Vlassak and William D. Nix. "Indentation plastic displacement field: Part I. The case of soft films on hard substrates." Journal of Materials Research, 1999.
[49] T. Y. Tsui, Joost Vlassak and William D. Nix. "Indentation plastic displacement field: Part II. The case of hard films on soft substrates." Journal of Materials Research, 1999.
[50] N.G. Chechenin, J. Bøttiger and J.P. Krog. "Nanoindentation of amorphous aluminum oxide films I. The influence of the substrate on the plastic properties." Thin Solid Films, 1995.
[51] Trevor F. Page, Sarah V. Hainsworth. "Using nanoindentation techniques for the characterization of coated systems: a critique." Surface and Coatings Technology, 1993.
[52] B.D. Fabes, W.C. Oliver, R.A. McKee and F.J. Walker. "The determination of film hardness from the composite response of film and substrate to nanometer scale indentations." Journal of Materials Research, 1992.
[53] M.F. Doerner, D.S. Gardner and W.D. Nix. "Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques." Journal of Materials Research, 1986.
[54] T. Y. Tsui and G. M. Pharr. "Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates." Journal of Materials Research, 1999.
[55] J. L. Hay, M. E. O'Hern and W. C. Oliver. "Tie Importance of Contact Radius for Substrate-Independent Property Measurement of Thin Films." MRS Online Proceedings Library Archive, 1998.
[56] Jack C. Hay and G. M. Pharr. "Critical issues in measuring the mechanical properties of hard films on soft substrates by nanoindentation techniques." MRS Online Proceedings Library Archive, 1997.
[57] D. L. Joslin and W. C. Oliver. "A new method for analyzing data from continuous depth-sensing microindentation tests." Journal of Materials Research, 1990.
[58] J. Menčík, D. Munz, E. Quandt, E.R. Weppelmann and M.V. Swain. "Determination of elastic modulus of thin layers using nanoindentation." Journal of Materials Research, 1997.
[59] Wang Zhixin. "Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques." Mechanical Engineering, 2011.
[60] Christopher B. Walsh and Elias I. Franses. "Ultrathin PMMA films spin-coated from toluene solutions." Thin Solid Films, 2003.
[61] Hiroshi Hoshino, Susumu Okada, Hiroshi Urakawa and Kanji Kajiwara. "Gelation of poly (vinyl alcohol) in dimethyl sulfoxide/water solvent." Polymer Bulletin, 1996.
[62] XiaopingQian and J.S.Villarrubia. "General three-dimensional image simulation and surface reconstruction in scanning probe microscopy using a dexel representation." Ultramicroscopy, 2007.
[63] J. S. Villarrubia. "Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation." Journal of research of the National Institute of Standards and Technology, 1997.
[64] T.R. Albrecht, S. Akamine, T.E. Carver and C.F. Quate. " Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 1990.
[65] H.J. Butt, P. Siedle, K. Seifert, K. Fendler, T. Seeger, E. Bamberg, A.L. Weisenhorn, K. Goldie and A. Engel. "Scan speed limit in atomic force microscopy." Journal of microscopy, 1993.
[66] W.C. Young, R.G. Budynas, A.M. Sadegh. "Roark's formulas for stress and strain. " New York:McGraw-Hill, 2002.
[67] Jeffrey L. Hutter and John Bechhoefer. "Calibration of atomic‐force microscope tips." Review of Scientific Instruments, 1993.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw