系統識別號 U0026-2907201917124400
論文名稱(中文) 銅/氧化亞銅複合薄膜應用於先進鈣鈦礦太陽能電池及光偵測器之研究
論文名稱(英文) Cu/Cu2O composite films for novel perovskite solar cells and photodetectors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 107
學期 2
出版年 108
研究生(中文) 陳宥駿
研究生(英文) You-Jyun Chen
學號 L78991186
學位類別 博士
語文別 英文
論文頁數 101頁
口試委員 指導教授-黃榮俊
中文關鍵字 鈣鈦礦  氧化亞銅  太陽能電池  光偵測器 
英文關鍵字 perovskite  Cu2O  solar cell  photodetector 
中文摘要 近年來,能源議題爭論不斷,從廢核到全民公投的「以核養綠」通過,人們漸漸意識到能源的重要性,再也不要“用愛發電”。根據台灣電力公司公布:107年台灣發電量結構以燃油+燃氣+燃煤超過80%的火力發電為主,核能11.4%為輔,其他再生、抽蓄、汽電能源還供給不到9%,說明了整體發電的形式依舊偏向對環境有負面的影響。隨著人們的環保意識抬頭,火力發電會造成空污問題,核能核廢料丟棄存放地點的設置已成為民意與政策互相角力辯論的議題,世界各國積極研發使用潔淨的再生能源,希望能以最積極的腳步減輕和解決傳統發電所產生的汙染問題,以綠色能源取代更多的燃煤、核能發電。綠能發電常見的有:太陽能、風力、水力以及生質能源發電,而太陽能又以鈣鈦礦太陽能電池在短短數年期間非常快速地成長,已由最初的3.8%提升至24.2%以上,被視為具有能與結晶矽太陽能電池競爭的潛力股。然而,由於鈣鈦礦本質上的缺陷,易受外在環境影響以及金屬電極的化學反應使得穩定性異常得差。
第二部分調控Cu/Cu2O的厚度找出電性和透光度最佳平衡點,期望作為透明電極取代金屬電極。對於雙面透光的鈣鈦礦太陽能電池已經實現14.1% (從FTO照光)和9.37% (從Cu/Cu2O照光)的光電轉換效率,開啟雙面透光元件結合太陽能窗應用於建築物整合太陽光電系統中的可能性。
英文摘要 In recent year, the energy issues have been arguing endlessly. From the stop nuclear power generation to the vote through on nuclear energy by referendum. People are gradually realizing the importance of energy and never want to use “ love ” to generate electricity. According to the announcement of the Taiwan Power Company, the power generation structure of Taiwan in 107 year is mainly based on thermal power generation with fuel, gas, and coal burning of more than 80%. Nuclear energy is 11.4%, and other renewable, pumping, and steam energy sources are still less than 9%. This shows that the form of overall power generation still has a negative impact on the environment. As people's awareness of environmental protection rises, thermal power generation will cause air pollution problems and the setting storage sites of nuclear wastes have become a topic of debate between public opinion and policy. Countries around the world are actively developing and using clean renewable energy. We hope to reduce and solve the pollution problems caused by traditional power generation in the most positive way, and replace thermal and nuclear power with green energy. Green energy power generation is commonly found in solar, wind, hydro, and biomass energy generation. While perovskite-based solar cells has grown very rapidly in just a few years, which power conversion efficiency (PCE) has increased from the initial 3.8% to more than 24.2%, it is considered to have great potential and can compete with crystal Si-based solar cells. However, due to the inherent defects of the perovskite, it is susceptible to the external environment and the chemical reaction of the metal electrode makes the poor stability.
How to improve stability? The first way is to optimize the composition of the perovskite. Although this method is very useful, it is also very laborious. On the other hand, incorporating proper carrier transport layers and electrodes into perovskite-based solar cells is also considered as effective ways to maintain device stability as well as the efficiency of perovskite-based solar cells. Therefore, this study researches the effect of inorganic hole transport material Cu/Cu2O on perovskite solar cells to expect stability improved as well as the PCE increased.
The first part uses the ion beam sputtering system to deposit the Cu/Cu2O composite films by adjusting the ratio of argon and oxygen. To keep the organic hole transport material Spiro-OMeTAD on the perovskite, the organic material acts as a buffer layer so that the deposition of Cu/Cu2O does not damage the light absorbing layer perovskite. The mobilities of Cu/Cu2O are at least three orders of magnitude higher than the organic hole transport layers of Spiro-OMeTAD. In addition to helping the hole transport, it also isolates the organic material from direct contact with the external atmosphere and the metal electrode, effectively improving device efficiency and long-term stability.
The second part controlled the composition and thickness, the transmission and conductivity of the Cu/Cu2O composite electrode have been optimized for efficient perovskite solar cells. PCEs of 14.10% and 9.37% have been achieved for the bifacial-illuminated perovskite-based solar cell when the one sun AM1.5G illumination is incident from the fluorine-doped tin oxide (FTO) side and Cu/Cu2O side, respectively. This result opens up the possibility for a bifacial-illuminated devices in combination with a power-generating window in the building-integrated photovoltaics.
The third part of the photodetector is to use a Cu/Cu2O as the carrier transfer electrode to directly replace the organic hole transport material and the metal electrode. This work reveals that the perovskite/(Cu/Cu2O) heterojunction photodetector a promising candidate for applications in bifacial-illuminated and flexible/wearable optoelectronic technologies.
論文目次 中文摘要 I
Abstract III
誌謝 VI
Table of Contents VIII
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
1.1 Sun 1
1.2 What is solar cells? 2
1.3 Perovskite-based solar cell 4
1.4 Motivation and objectives 9
Chapter 2 Related theory and model 14
2.1 Air mass 14
2.2 Current-Voltage characteristics 15
2.3 Photodetector characteristics 17
Chapter 3 Experimental methods 18
3.1 Ion beam sputtering system 18
3.2 Pulsed laser deposition 20
3.3 Fabrication processes 23
3.4 Characterization and Measurement 25
Chapter 4 Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells 29
4.1 Introduction 29
4.2 Characterizations of the Cu/Cu2O composite films 31
4.3 Devices 39
4.4 Stability Test 43
4.5 Discussion 44
Chapter 5 Cu/Cu2O nanocomposite as a p-type transparent-conductive-oxide for efficient bifacial-illuminated perovskite solar cells 45
5.1 Introduction 45
5.2 Room temperature (~ 30 °C) processed Cu/Cu2O films 48
5.3 Bifacial-Illuminated Devices 54
5.4 Stability Test 61
5.5 Conclusions 62
Chapter 6 Double-side operable perovskite photodetector using Cu/Cu2O as a hole transport electrode 64
6.1 Introduction 64
6.2 Results and discussion 67
6.3 Double-side operable photodetector 73
6.4 Conclusions 81
Chapter 7 Research that has not been done 83
7.1 PLD grows CIGS solar material 83
Chapter 8 Conclusions and Future works 87
8.1 Conclusions and challenges 87
References 91
參考文獻 1. A. P. Boss and R. H. Durisen, "Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation," The Astrophysical Journal 621, L137-L140 (2005).
2. Wikipedia contributors, "Sun" (Wikipedia, The Free Encyclopedia, 24 May 2019 04:02 UTC), retrieved 6 June 2019 08:29 UTC, https://en.wikipedia.org/w/index.php?title=Sun&oldid=898521374.
3. N. Espinosa, L. Serrano-Luján, A. Urbina, and F. C. Krebs, "Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective," Solar Energy Materials and Solar Cells 137, 303-310 (2015).
4. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society 131, 6050-6051 (2009).
5. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports 2, 591 (2012).
6. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science 338, 643-647 (2012).
7. N. R. E. Laboratory., "Best research cell efficiencies.," National Renewable Energy Laboratory https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf (2019).
8. J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, "Highly efficient planar perovskite solar cells through band alignment engineering," Energy & Environmental Science 8, 2928-2934 (2015).
9. V. Gonzalez-Pedro, E. J. Juarez-Perez, W.-S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, "General Working Principles of CH3NH3PbX3 Perovskite Solar Cells," Nano Letters 14, 888-893 (2014).
10. F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, "Ambipolar solution-processed hybrid perovskite phototransistors," Nature Communications 6, 8238 (2015).
11. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber," Science 342, 341-344 (2013).
12. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells," Energy & Environmental Science 7, 399-407 (2014).
13. P. Docampo, F. C. Hanusch, S. D. Stranks, M. Döblinger, J. M. Feckl, M. Ehrensperger, N. K. Minar, M. B. Johnston, H. J. Snaith, and T. Bein, "Solution Deposition-Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells," Advanced Energy Materials 4, 1400355 (2014).
14. M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature 501, 395 (2013).
15. Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, and G. Cui, "Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells," Angewandte Chemie International Edition 54, 9705-9709 (2015).
16. M. I. Hossain, F. H. Alharbi, and N. Tabet, "Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells," Solar Energy 120, 370-380 (2015).
17. C. Chen, L. He, L. Lai, H. Zhang, J. Lu, L. Guo, and Y. Li, "Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies," Journal of Physics: Condensed Matter 21, 145601 (2009).
18. P. Fulay and J.-K. Lee, Electronic, magnetic, and optical materials (Crc Press, 2016).
19. D. Kudryashov, A. Gudovskikh, K. Zelentsov, A. Mozharov, A. Babichev, and A. Filimonov, "The temperature dependence of the electrical conductivity in Cu2O thin films grown by magnetron sputtering," Journal of Physics: Conference Series 741, 012013 (2016).
20. H.-B. Li, W. Wang, X. Xie, Y. Cheng, Z. Zhang, H. Dong, R. Zheng, W.-H. Wang, F. Lu, and H. Liu, "Electronic Structure and Ferromagnetism Modulation in Cu/Cu2O Interface: Impact of Interfacial Cu Vacancy and Its Diffusion," Scientific Reports 5, 15191 (2015).
21. D. S. Murali, S. Kumar, R. J. Choudhary, A. D. Wadikar, M. K. Jain, and A. Subrahmanyam, "Synthesis of Cu2O from CuO thin films: Optical and electrical properties," AIP Advances 5, 047143 (2015).
22. X. Yu, X. Zhang, S. Wang, and G. Feng, "A first principle study on the magnetic properties of Cu2O surfaces," Current Applied Physics 15, 1303-1311 (2015).
23. H. Zhu, J. Zhang, C. Li, F. Pan, T. Wang, and B. Huang, "Cu2O thin films deposited by reactive direct current magnetron sputtering," Thin Solid Films 517, 5700-5704 (2009).
24. B. S. Li, K. Akimoto, and A. Shen, "Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer," Journal of Crystal Growth 311, 1102-1105 (2009).
25. K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, "Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor," Applied Physics Letters 93, 202107 (2008).
26. C. Malerba, F. Biccari, C. Leonor Azanza Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, "Absorption coefficient of bulk and thin film Cu2O," Solar Energy Materials and Solar Cells 95, 2848-2854 (2011).
27. L. C. Olsen, F. W. Addis, and W. Miller, "Experimental and theoretical studies of Cu2O solar cells," Solar Cells 7, 247-279 (1982).
28. L. Lin, L. Jiang, P. Li, B. Fan, and Y. Qiu, "A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing," Journal of Physics and Chemistry of Solids 124, 205-211 (2019).
29. Y. Xiao, G. Han, J. Wu, and J.-Y. Lin, "Efficient bifacial perovskite solar cell based on a highly transparent poly (3, 4-ethylenedioxythiophene) as the p-type hole-transporting material," Journal of Power Sources 306, 171-177 (2016).
30. Z. Zhang and P. Wang, "Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy," Journal of Materials Chemistry 22, 2456-2464 (2012).
31. Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia, and Y.-B. Cheng, "Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity," Journal of Materials Chemistry A 3, 8139-8147 (2015).
32. Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga, and Y. Qi, "Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes," Advanced Materials Interfaces 2, 1500195 (2015).
33. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang, "Giant switchable photovoltaic effect in organometal trihalide perovskite devices," Nature Materials 14, 193 (2014).
34. J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao, A. Gruverman, J. Shield, and J. Huang, "Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?," Energy & Environmental Science 9, 3650-3656 (2016).
35. https://zh-tw.enlitechnology.com/show/air-mass-am1-5g-am1-5d-306249.htm.
36. G. Sathiyan, E. K. T. Sivakumar, R. Ganesamoorthy, R. Thangamuthu, and P. Sakthivel, "Review of carbazole based conjugated molecules for highly efficient organic solar cell application," Tetrahedron Letters 57, 243-252 (2016).
37. H. Wang and D. H. Kim, "Perovskite-based photodetectors: materials and devices," Chemical Society Reviews 46, 5204-5236 (2017).
38. J. Ohta, H. Fujioka, S. Ito, and M. Oshima, "Growth temperature dependence of structural properties for AlN films grown on (Mn,Zn)Fe2O4 substrates," Thin Solid Films 435, 218-221 (2003).
39. P. Gratia, A. Magomedov, T. Malinauskas, M. Daskeviciene, A. Abate, S. Ahmad, M. Grätzel, V. Getautis, and M. K. Nazeeruddin, "A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells," Angewandte Chemie International Edition 54, 11409-11413 (2015).
40. M.-H. Li, P.-S. Shen, K.-C. Wang, T.-F. Guo, and P. Chen, "Inorganic p-type contact materials for perovskite-based solar cells," Journal of Materials Chemistry A 3, 9011-9019 (2015).
41. C. H. Teh, R. Daik, E. L. Lim, C. C. Yap, M. A. Ibrahim, N. A. Ludin, K. Sopian, and M. A. Mat Teridi, "A review of organic small molecule-based hole-transporting materials for meso-structured organic–inorganic perovskite solar cells," Journal of Materials Chemistry A 4, 15788-15822 (2016).
42. W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, and C. Huang, "Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells," Advanced Energy Materials 6, 1600474 (2016).
43. B. Abdollahi Nejand, V. Ahmadi, and H. R. Shahverdi, "New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells," ACS Applied Materials & Interfaces 7, 21807-21818 (2015).
44. W.-Y. Chen, L.-L. Deng, S.-M. Dai, X. Wang, C.-B. Tian, X.-X. Zhan, S.-Y. Xie, R.-B. Huang, and L.-S. Zheng, "Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells," Journal of Materials Chemistry A 3, 19353-19359 (2015).
45. B. A. Nejand, V. Ahmadi, S. Gharibzadeh, and H. R. Shahverdi, "Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells," ChemSusChem 9, 302-313 (2016).
46. S. Chavhan, O. Miguel, H.-J. Grande, V. Gonzalez-Pedro, R. S. Sánchez, E. M. Barea, I. Mora-Seró, and R. Tena-Zaera, "Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact," Journal of Materials Chemistry A 2, 12754-12760 (2014).
47. J. A. Christians, R. C. M. Fung, and P. V. Kamat, "An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide," Journal of the American Chemical Society 136, 758-764 (2014).
48. M. Huangfu, Y. Shen, G. Zhu, K. Xu, M. Cao, F. Gu, and L. Wang, "Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer," Applied Surface Science 357, 2234-2240 (2015).
49. S. Ito, S. Tanaka, and H. Nishino, "Lead-Halide Perovskite Solar Cells by CH3NH3I Dripping on PbI2–CH3NH3I–DMSO Precursor Layer for Planar and Porous Structures Using CuSCN Hole-Transporting Material," The Journal of Physical Chemistry Letters 6, 881-886 (2015).
50. V. E. Madhavan, I. Zimmermann, C. Roldán-Carmona, G. Grancini, M. Buffiere, A. Belaidi, and M. K. Nazeeruddin, "Copper Thiocyanate Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells," ACS Energy Letters 1, 1112-1117 (2016).
51. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Grätzel, "Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency," Nature Communications 5, 3834 (2014).
52. G. A. Sepalage, S. Meyer, A. Pascoe, A. D. Scully, F. Huang, U. Bach, Y.-B. Cheng, and L. Spiccia, "Copper(I) Iodide as Hole-Conductor in Planar Perovskite Solar Cells: Probing the Origin of J–V Hysteresis," Advanced Functional Materials 25, 5650-5661 (2015).
53. J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, and S. M. Zakeeruddin, "Highly efficient planar perovskite solar cells through band alignment engineering," Energy & Environmental Science 8, 2928-2934 (2015).
54. M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O'Brien, "Copper Oxide Nanocrystals," Journal of the American Chemical Society 127, 9506-9511 (2005).
55. S. Chatterjee and A. J. Pal, "Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures," The Journal of Physical Chemistry C 120, 1428-1437 (2016).
56. W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huang, "High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer," Nanoscale 8, 10806-10813 (2016).
57. Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, "Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design," Semiconductor Science and Technology 30, 054004 (2015).
58. C. Zuo and L. Ding, "Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells," Small 11, 5528-5532 (2015).
59. L.-C. Chen, C.-C. Chen, K.-C. Liang, S. H. Chang, Z.-L. Tseng, S.-C. Yeh, C.-T. Chen, W.-T. Wu, and C.-G. Wu, "Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells," Nanoscale Research Letters 11, 402 (2016).
60. Y. Guo, C. Liu, H. Tanaka, and E. Nakamura, "Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light," The Journal of Physical Chemistry Letters 6, 535-539 (2015).
61. G. Panzner, B. Egert, and H. P. Schmidt, "The stability of CuO and Cu2O surfaces during argon sputtering studied by XPS and AES," Surface Science 151, 400-408 (1985).
62. B. Sun, W. Hong, H. Aziz, and Y. Li, "A pyridine-flanked diketopyrrolopyrrole (DPP)-based donor–acceptor polymer showing high mobility in ambipolar and n-channel organic thin film transistors," Polymer Chemistry 6, 938-945 (2015).
63. G. Ertl, R. Hierl, H. Knözinger, N. Thiele, and H. P. Urbach, "XPS study of copper aluminate catalysts," Applications of Surface Science 5, 49-64 (1980).
64. J. Haber, T. Machej, L. Ungier, and J. Ziółkowski, "ESCA studies of copper oxides and copper molybdates," Journal of Solid State Chemistry 25, 207-218 (1978).
65. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature Materials 13, 897 (2014).
66. T. S. Krasienapibal, T. Fukumura, Y. Hirose, and T. Hasegawa, "Improved room temperature electron mobility in self-buffered anatase TiO2epitaxial thin film grown at low temperature," Japanese Journal of Applied Physics 53, 090305 (2014).
67. T. Tachikawa, M. Minohara, Y. Nakanishi, Y. Hikita, M. Yoshita, H. Akiyama, C. Bell, and H. Y. Hwang, "Metal-to-insulator transition in anatase TiO2 thin films induced by growth rate modulation," Applied Physics Letters 101, 022104 (2012).
68. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, and M. S. Islam, "Ionic transport in hybrid lead iodide perovskite solar cells," Nature Communications 6, 7497 (2015).
69. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, "Anomalous Hysteresis in Perovskite Solar Cells," The Journal of Physical Chemistry Letters 5, 1511-1515 (2014).
70. D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu, and R. P. H. Chang, "Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells," Energy & Environmental Science 9, 3071-3078 (2016).
71. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers," Science 350, 944 (2015).
72. Z. Yang, B. Cai, B. Zhou, T. Yao, W. Yu, S. Liu, W.-H. Zhang, and C. Li, "An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells," Nano Energy 15, 670-678 (2015).
73. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science 342, 341-344 (2013).
74. N. B. R.-C. Efficiencies, "https://www.nrel.gov/pv/assets/images/efficiency-chart.png."
75. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X. M. Tao, "Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications," Advanced materials 26, 5310-5336 (2014).
76. Z. Ding, V. Stoichkov, M. Horie, E. Brousseau, and J. Kettle, "Spray coated silver nanowires as transparent electrodes in OPVs for Building Integrated Photovoltaics applications," Solar Energy Materials and Solar Cells 157, 305-311 (2016).
77. S. Y. Myong and S. W. Jeon, "Efficient outdoor performance of esthetic bifacial a-Si: H semi-transparent PV modules," Applied Energy 164, 312-320 (2016).
78. C. s. O. Ramírez Quiroz, C. Bronnbauer, I. Levchuk, Y. Hou, C. J. Brabec, and K. Forberich, "Coloring semitransparent perovskite solar cells via dielectric mirrors," ACS nano 10, 5104-5112 (2016).
79. D. S. Ginley and C. Bright, "Transparent conducting oxides," Mrs Bulletin 25, 15-18 (2000).
80. T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology 20, S35 (2005).
81. K. H. Zhang, K. Xi, M. G. Blamire, and R. G. Egdell, "P-type transparent conducting oxides," Journal of Physics: Condensed Matter 28, 383002 (2016).
82. Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, and L. H. Wong, "Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells," ACS nano 8, 6797-6804 (2014).
83. P. You, Z. Liu, Q. Tai, S. Liu, and F. Yan, "Efficient semitransparent perovskite solar cells with graphene electrodes," Advanced Materials 27, 3632-3638 (2015).
84. G. E. Eperon, D. Bryant, J. Troughton, S. D. Stranks, M. B. Johnston, T. Watson, D. A. Worsley, and H. J. Snaith, "Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite," The journal of physical chemistry letters 6, 129-138 (2014).
85. G. E. Eperon, V. M. Burlakov, A. Goriely, and H. J. Snaith, "Neutral color semitransparent microstructured perovskite solar cells," ACS nano 8, 591-598 (2013).
86. C. Roldán-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. J. Bolink, "High efficiency single-junction semitransparent perovskite solar cells," Energy & Environmental Science 7, 2968-2973 (2014).
87. E. Della Gaspera, Y. Peng, Q. Hou, L. Spiccia, U. Bach, J. J. Jasieniak, and Y.-B. Cheng, "Ultra-thin high efficiency semitransparent perovskite solar cells," Nano Energy 13, 249-257 (2015).
88. S. Pang, D. Chen, C. Zhang, J. Chang, Z. Lin, H. Yang, X. Sun, J. Mo, H. Xi, and G. Han, "Efficient bifacial semitransparent perovskite solar cells with silver thin film electrode," Solar Energy Materials and Solar Cells 170, 278-286 (2017).
89. C. Hanmandlu, C.-Y. Chen, K. M. Boopathi, H.-W. Lin, C.-S. Lai, and C.-W. Chu, "Bifacial Perovskite Solar Cells Featuring Semitransparent Electrodes," ACS applied materials & interfaces 9, 32635-32642 (2017).
90. G. H. Jung, K. Hong, W. J. Dong, S. Kim, and J. L. Lee, "BCP/Ag/MoO3 transparent cathodes for organic photovoltaics," Advanced Energy Materials 1, 1023-1028 (2011).
91. Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga, and Y. Qi, "Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes," Advanced Materials Interfaces 2(2015).
92. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang, "Giant switchable photovoltaic effect in organometal trihalide perovskite devices," Nature materials 14(2014).
93. M. Hossain, F. Alharbi, and N. Tabet, "Computational Assessment of the Performance of Lead Halide Perovskite Solar Cells Using Inorganic Layers as Hole Transport Materials," in Proceedings of the TMS Middle East — Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), I. Karaman, R. Arróyave, and E. Masad, eds. (Springer International Publishing, Cham, 2016), pp. 339-342.
94. B. A. Nejand, V. Ahmadi, S. Gharibzadeh, and H. R. Shahverdi, "Cuprous oxide as a potential low‐cost hole‐transport material for stable perovskite solar cells," ChemSusChem 9, 302-313 (2016).
95. A. Musa, T. Akomolafe, and M. Carter, "Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties," Solar Energy Materials and Solar Cells 51, 305-316 (1998).
96. L. Olsen, F. Addis, and W. Miller, "Experimental and theoretical studies of Cu2O solar cells," Solar cells 7, 247-279 (1982).
97. D. Trivich, E. Y. Wang, and R. J. Komp, Cuprous oxide photovoltaic cells (Department of Energy, 1976).
98. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials 13, 897-903 (2014).
99. D. Chen, S. Pang, L. Zhou, X. Li, A. Su, W. Zhu, J. Chang, J. Zhang, C. Zhang, and Y. Hao, "An efficient TeO2/Ag transparent top electrode for 20%-efficiency bifacial perovskite solar cells with a bifaciality factor exceeding 80%," Journal of Materials Chemistry A 7, 15156-15163 (2019).
100. S. B. Alexander, Optical communication receiver design (SPIE Optical engineering press London, 1997).
101. T. Mueller, F. Xia, and P. Avouris, "Graphene photodetectors for high-speed optical communications," Nature photonics 4, 297 (2010).
102. L. Becker, "Influence of IR sensor technology on the military and civil defense," in Quantum Sensing and Nanophotonic Devices III, (International Society for Optics and Photonics, 2006), 61270S.
103. A. Poglitsch, C. Waelkens, N. Geis, H. Feuchtgruber, B. Vandenbussche, L. Rodriguez, O. Krause, E. Renotte, C. Van Hoof, and P. Saraceno, "The photodetector array camera and spectrometer (PACS) on the Herschel space observatory," Astronomy & astrophysics 518, L2 (2010).
104. L. Malic, D. Brassard, T. Veres, and M. Tabrizian, "Integration and detection of biochemical assays in digital microfluidic LOC devices," Lab on a Chip 10, 418-431 (2010).
105. S. Lim, D. Son, J. Kim, Y. B. Lee, J. K. Song, S. Choi, D. J. Lee, J. H. Kim, M. Lee, and T. Hyeon, "Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures," Advanced Functional Materials 25, 375-383 (2015).
106. Y.-J. Yu and M. Wober, "Active pixel sensor with nanowire structured photodetectors," (Google Patents, 2012).
107. M. Patel, H. S. Kim, and J. Kim, "All transparent metal oxide ultraviolet photodetector," Advanced Electronic Materials 1, 1500232 (2015).
108. M. Patel, H.-S. Kim, H.-H. Park, and J. Kim, "Active adoption of void formation in metal-oxide for all transparent super-performing photodetectors," Scientific reports 6, 25461 (2016).
109. S. Abbas, M. Kumar, H.-S. Kim, J. Kim, and J.-H. Lee, "Silver-Nanowire-Embedded Transparent Metal-Oxide Heterojunction Schottky Photodetector," ACS applied materials & interfaces 10, 14292-14298 (2018).
110. S. Abbas, M. Kumar, and J. Kim, "All metal oxide-based transparent and flexible photodetector," Materials Science in Semiconductor Processing 88, 86-92 (2018).
111. Y. H. Ok, K. R. Lee, B. O. Jung, Y. H. Kwon, and H. K. Cho, "All oxide ultraviolet photodetectors based on a p-Cu2O film/n-ZnO heterostructure nanowires," Thin Solid Films 570, 282-287 (2014).
112. N. Park, K. Sun, Z. Sun, Y. Jing, and D. Wang, "High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing," Journal of Materials Chemistry C 1, 7333-7338 (2013).
113. D. B. Patel, K. R. Chauhan, W.-H. Park, H.-S. Kim, J. Kim, and J.-H. Yun, "Tunable TiO2 films for high-performing transparent Schottky photodetector," Materials Science in Semiconductor Processing 61, 45-49 (2017).
114. M. Copel, M. Gribelyuk, and E. Gusev, "Structure and stability of ultrathin zirconium oxide layers on Si (001)," Applied Physics Letters 76, 436-438 (2000).
115. S. M. Edlou, A. Smajkiewicz, and G. A. Al-Jumaily, "Optical properties and environmental stability of oxide coatings deposited by reactive sputtering," Applied Optics 32, 5601-5605 (1993).
116. M. Gutowski, J. E. Jaffe, C.-L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, "Thermodynamic stability of high-K dielectric metal oxides ZrO 2 and HfO 2 in contact with Si and SiO 2," Applied Physics Letters 80, 1897-1899 (2002).
117. S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, "Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method," Chemistry of materials 15, 3294-3299 (2003).
118. B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. Aplin, C. Soci, D. Yu, and D. Wang, "Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition," Nano Letters 7, 323-328 (2007).
119. Y.-J. Chen, M.-H. Li, J.-C.-A. Huang, and P. Chen, "The Cu/Cu2O nanocomposite as a p-type transparent-conductive-oxide for efficient bifacial-illuminated perovskite solar cells," Journal of Materials Chemistry C 6, 6280-6286 (2018).
120. F. Fu, T. Feurer, T. Jäger, E. Avancini, B. Bissig, S. Yoon, S. Buecheler, and A. N. Tiwari, "Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications," Nature communications 6, 8932 (2015).
121. H. Deng, X. Yang, D. Dong, B. Li, D. Yang, S. Yuan, K. Qiao, Y.-B. Cheng, J. Tang, and H. Song, "Flexible and Semitransparent Organolead Triiodide Perovskite Network Photodetector Arrays with High Stability," Nano Letters 15, 7963-7969 (2015).
122. X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, and Y. Xie, "High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite," Advanced Functional Materials 24, 7373-7380 (2014).
123. F. Wang, J. Mei, Y. Wang, L. Zhang, H. Zhao, and D. Zhao, "Fast Photoconductive Responses in Organometal Halide Perovskite Photodetectors," ACS Applied Materials & Interfaces 8, 2840-2846 (2016).
124. W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, and J. Huang, "Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film," Opt. Express 24, 8411-8419 (2016).
125. S. Chen and G. Shi, "Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices," Advanced Materials 29, 1605448 (2017).
126. H. Sun, W. Tian, F. Cao, J. Xiong, and L. Li, "Ultrahigh‐Performance Self‐Powered Flexible Double‐Twisted Fibrous Broadband Perovskite Photodetector," Advanced Materials 30, 1706986 (2018).
127. B. R. Sutherland, A. K. Johnston, A. H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos, and E. H. Sargent, "Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering," Acs Photonics 2, 1117-1123 (2015).
128. Z. Zheng, F. Zhuge, Y. Wang, J. Zhang, L. Gan, X. Zhou, H. Li, and T. Zhai, "Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector," Advanced Functional Materials 27, 1703115 (2017).
129. H. Zhou, Z. Song, P. Tao, H. Lei, P. Gui, J. Mei, H. Wang, and G. Fang, "Self-powered, ultraviolet-visible perovskite photodetector based on TiO 2 nanorods," RSC Advances 6, 6205-6208 (2016).
130. Y. Zhu, Z. Song, H. Zhou, D. Wu, R. Lu, R. Wang, and H. Wang, "Self-powered, broadband perovskite photodetector based on ZnO microspheres as scaffold layer," Applied Surface Science 448, 23-29 (2018).
131. K. Domanski, J.-P. Correa-Baena, N. Mine, M. K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, and M. Grätzel, "Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells," ACS nano 10, 6306-6314 (2016).
132. Y. Kato, L. Ono, M. Lee, S. Wang, S. Raga, and Y. Qi, "Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes," Advanced Materials Interfaces 2, 1500195 (2015).
133. T. Zhou, Z. Zang, J. Wei, J. Zheng, J. Hao, F. Ling, X. Tang, L. Fang, and M. Zhou, "Efficient charge carrier separation and excellent visible light photoresponse in Cu2O nanowires," Nano Energy 50, 118-125 (2018).
134. Z. Zang, "Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films," Applied Physics Letters 112, 042106 (2018).
135. H. Huang, J. Zhang, L. Jiang, and Z. Zang, "Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B," Journal of Alloys and Compounds 718, 112-115 (2017).
136. W. Yu, F. Li, H. Wang, E. Alarousu, Y. Chen, B. Lin, L. Wang, M. N. Hedhili, Y. Li, K. Wu, X. Wang, O. F. Mohammed, and T. Wu, "Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells," Nanoscale 8, 6173-6179 (2016).
137. M. Caironi, T. Agostinelli, D. Natali, M. Sampietro, R. Cugola, M. Catellani, and S. Luzzati, "External quantum efficiency versus charge carriers mobility in polythiophene/methanofullerene based planar photodetectors," Journal of Applied Physics 102, 024503 (2007).
138. X. Liu, L. Jiang, X. Zou, X. Xiao, S. Guo, C. Jiang, X. Liu, Z. Fan, W. Hu, X. Chen, W. Lu, W. Hu, and L. Liao, "Scalable Integration of Indium Zinc Oxide/Photosensitive-Nanowire Composite Thin-Film Transistors for Transparent Multicolor Photodetectors Array," Advanced Materials 26, 2919-2924 (2014).
139. D.-H. Kang, S. R. Pae, J. Shim, G. Yoo, J. Jeon, J. W. Leem, J. S. Yu, S. Lee, B. Shin, and J.-H. Park, "An Ultrahigh-Performance Photodetector based on a Perovskite–Transition-Metal-Dichalcogenide Hybrid Structure," Advanced Materials 28, 7799-7806 (2016).
140. Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park, and J. H. Cho, "High-Performance Perovskite–Graphene Hybrid Photodetector," Advanced Materials 27, 41-46 (2015).
141. M. Deepa, M. Salado, L. Calio, S. Kazim, S. M. Shivaprasad, and S. Ahmad, "Cesium power: low Cs+ levels impart stability to perovskite solar cells," Physical Chemistry Chemical Physics 19, 4069-4077 (2017).
142. J. Yu, X. Chen, Y. Wang, H. Zhou, M. Xue, Y. Xu, Z. Li, C. Ye, J. Zhang, and P. A. Van Aken, "A high-performance self-powered broadband photodetector based on a CH3NH3PbI3 perovskite/ZnO nanorod array heterostructure," Journal of Materials Chemistry C 4, 7302-7308 (2016).
143. J. Xing, H. Wei, E.-J. Guo, and F. Yang, "Highly sensitive fast-response UV photodetectors based on epitaxial TiO2 films," Journal of Physics D: Applied Physics 44, 375104 (2011).
144. S. Dhar, P. Chakraborty, T. Majumder, and S. P. Mondal, "Acid-Treated PEDOT: PSS Polymer and TiO2 Nanorod Schottky Junction Ultraviolet Photodetectors with Ultrahigh External Quantum Efficiency, Detectivity, and Responsivity," ACS applied materials & interfaces 10, 41618-41626 (2018).
145. Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang, S. Ran, H. Huang, J. Xu, H. Han, D. Chen, and G. Shen, "Transferable and Flexible Nanorod-Assembled TiO2 Cloths for Dye-Sensitized Solar Cells, Photodetectors, and Photocatalysts," ACS Nano 5, 8412-8419 (2011).
146. H. Long, L. Ai, S. Li, H. Huang, X. Mo, H. Wang, Z. Chen, Y. Liu, and G. Fang, "Photosensitive and temperature-dependent I–V characteristics of p-NiO film/n-ZnO nanorod array heterojunction diode," Materials Science and Engineering: B 184, 44-48 (2014).
147. S. Xiong, J. Tong, L. Mao, Z. Li, F. Qin, F. Jiang, W. Meng, T. Liu, W. Li, and Y. Zhou, "Double-side responsive polymer near-infrared photodetectors with transfer-printed electrode," Journal of Materials Chemistry C 4, 1414-1419 (2016).
148. X. Liu, L. Jiang, X. Zou, X. Xiao, S. Guo, C. Jiang, X. Liu, Z. Fan, W. Hu, and X. Chen, "Scalable Integration of Indium Zinc Oxide/Photosensitive‐Nanowire Composite Thin‐Film Transistors for Transparent Multicolor Photodetectors Array," Advanced Materials 26, 2919-2924 (2014).
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-20起公開。

  • 如您有疑問,請聯絡圖書館