進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2907201914511800
論文名稱(中文) 單拍條紋投影系統於三維表面形貌量測之研發
論文名稱(英文) Development of a Single-Shot Fringe Projection System for 3D Surface Profile Measurement
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 黃致堯
研究生(英文) Jhih-Yao Huang
電子信箱 hualinch1512@gmail.com
學號 N16064470
學位類別 碩士
語文別 中文
論文頁數 138頁
口試委員 指導教授-陳元方
口試委員-林世聰
口試委員-黃敏睿
口試委員-林明澤
中文關鍵字 條紋投影法  即時量測  螺旋正交轉換  光流法 
英文關鍵字 fringe projection method  Real-time  spiral phase quadrature transform  optical flow method 
學科別分類
中文摘要 本文結合螺旋正交轉換與光流法應用於條紋投影法,建構出一套能即時量測的單拍條紋投影表面形貌量測系統,其架設主要是將傳統相位移法中所設置的CCD改為彩色相機,並將傳統投影的黑白條紋改為紅綠相間的彩色條紋,然後透過彩色相機擷取一張彩色條紋影像並取出紅、綠兩種顏色頻道的條紋影像,再利用螺旋正交轉換與光流法計算出相位差90度的條紋影像,進而求得條紋相位,接著透過相位展開法來得到連續相位,最後獲得試件的表面形貌。而本文分為系統分析與實驗兩個部分,在分析的部分是透過投影不同間距之條紋來分析條紋間距對系統量測結果的影響,其結果得知條紋間距越小,均方根誤差(Root-Mean-Square error, RMSE)減少了0.034mm ~ 0.087mm,RMSE百分比減少了0.49% ~ 4.18%。此外,將設置參數、實際條紋間距與量測高度極限值帶入理論中計算,從結果得知上升高度所造成的相位差極限值不到理論的2π,因此計算系統實際量測高度極限值若以2π來計算,則結果會產生錯誤。實驗部分則是量測四組不同試件,並將量測值與SMS-300M與四步相位移條紋投影法之量測值進行比較,來驗證本系統之準確性,結果顯示在量測高度達0.5mm ~ 5mm的試件時,RMSE大約為17μm至55μm;平均絕對誤差(Mean-Absolute error, MAE)大約為13μm至28μm。
英文摘要 In this thesis, we would apply the spiral phase quadrature transform and optical flow method to the fringe projection method to construct the single-shot fringe projection surface profile measurement system which can measure in real time. The experiment could be fulfill by these step: first, change the CCD of phase-shift method to color camera, and the black and white fringe into the red and green one. Second, get a color fringe image by color camera and extracting out the red and green channel fringe images. And then with spiral quadrature transform and optical flow method we could obtain the fringe pattern with a phase difference of 90 degrees. Last, the surface profile of the specimen could be issued from the unwrapping phase and the algorithm of fringe projection method.
This thesis is divided into two parts-- system analysis and experiment. In the former one, we study the impact of pitch on the system measurement results by analyzing the projecting fringe of different pitch. The result reveals that the smaller the pitch, RMSE reduced by 0.034mm ~ 0.087mm, RMSE percentage reduced by 0.49% ~ 4.18%. Furthermore, bring the setting parameters, the actual pitch of fringe and the limit height of measurement into the theory for calculation will show that the phase difference limit value caused by the rising height is less than 2π. That means when calculated the actual measurement height limit value by phase difference 2π, the result will be an error.
For the experiment part, we measured four groups of different specimens, and compared the measured values with the measured values of SMS-300M and four-step-phase-shifting fringe projection method to verify the accuracy of the system. The results show that the root-mean-square error of the specimens with height 0.5mm ~ 5mm is about 17μm to 55μm, and the mean-absolute error is about 13μm to 28μm. The RMSE percentage of the specimens with height 13mm is about 3.6% to 3.8%, and the MAE percentage is about 2.8% to 3.0%.
論文目次 摘要 I
Abstract II
致謝 V
目錄 VI
圖目錄 IX
表目錄 XVI
符號說明 XVIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 文獻回顧 3
1.4 本文架構 9
第二章 單拍條紋投影法之原理 10
2.1 單拍條紋投影法 10
2.2 條紋圖之影像處理 16
2.2.1 空間濾波[20] 17
2.2.2 伸張強化 18
2.2.3 局部二值化法(Local Thresholding)[21] 20
第三章 相位解析法 25
3.1 條紋影像去背景光 25
3.2 螺旋正交轉換(Spiral phase quadrature transform) 27
3.3 里斯轉換(Riesz transform) 28
3.3.1 螺旋相位(Spiral phase) 30
3.4 條紋方向角(Fringe orientation angle) 32
3.4.1 亮度守恆方程式 33
3.4.2 光流平滑限制(Optical flow smoothness constraint) 35
3.5 Macy相位展開法[28] 41
第四章 實驗架設、步驟與系統分析 44
4.1 單拍條紋投影法實驗系統介紹 44
4.2 馬達校正 50
4.3 單拍條紋投影法實驗步驟 52
4.4 系統分析 55
4.4.1 條紋間距(Pitch)分析 55
4.4.2 系統量測限制 68
4.4.3 分析結果與討論 71
第五章 實驗結果與討論 73
5.1 斜平板量測 73
5.2 曲面量測 80
5.3 階梯板量測 88
5.4 模型量測 94
5.5 結果與討論 101
第六章 結論與建議 103
6.1 結論 103
6.2 建議 105
參考文獻 106
附錄 110
附錄A 條紋間距25 pixels - 平板之量測結果 110
附錄B 條紋間距22 pixels - 平板之量測結果 113
附錄C 條紋間距20 pixels - 平板之量測結果 116
附錄D 條紋間距18 pixels - 平板之量測結果 119
附錄E 條紋間距17 pixels - 平板之量測結果 122
附錄F 條紋間距16 pixels - 平板之量測結果 125
附錄G 條紋間距15 pixels - 平板之量測結果 128
附錄H 條紋間距14 pixels - 平板之量測結果 131
附錄I 條紋間距13 pixels - 平板之量測結果 134
附錄J 四步相位移條紋投影法 – 模型之量測結果 137
參考文獻 1. V. Srinivasan, H.C. Liu, and M. Halioua, “Automated Phase-measuring profilometry of 3-D diffuse objects,”Applied Optics, Vol.23, No.18, pp.3105-3108, 1984.
2. Xian-Yu Su, Wen-Sen Zhou, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,”Optics Communication Vol.94, pp.561-573, 1992.
3. C. Quan, X.Y. He, C.F. Wang, C.J. Tay, H.M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,”Optics Communication Vol.189, pp.21-29, 2001.
4. C. Quan, C.J. Tay, X.Y. He, X. Kang, H.M. Shang, “Microscopic surface contouring by fringe projection method,”Optics & Laser Technology Vol.34, pp.547-552, 2002.
5. 張柏毅,“應用條紋投影法及條紋反射法量測物體表面形貌”,國立成功大學機械工程學系碩士論文,2005。
6. 黃奕棠,“高反射性表面形貌之光學量測研究”,國立成功大學機械工程學系碩士論文,2006。
7. L. Chen and X. Nguyen, “Real-time 3-D robot vision employing novel color fringe projection,”4th International Conference on Autonomous Robots and Agents 2009, pp.177-181.
8. M. Dai, F. Yang, and X. He,“Single-shot color fringe projection for three-dimensional shape measurement of objects with discontinuities,”Appl. Opt. 51(12), 2062–2069, 2012.
9. M. Takeda, and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,”Appl. Opt. 22, 3977-3982, 1983.
10. Qian K.M., Wang H.X., Gao W.J., “Windowed Fourier transform for fringe pattern analysis: theoretical analyses,”Appl Opt 2008;47:5408–19.
11. B. Li, Y. An and S. Zhang,“Single-shot absolute 3D shape measurement with Fourier transform profilometry,”Appl. Opt. 55, 5219-5225 (2016).
12. Larkin, K.G., “Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform,”Journal of the Optical Society of America A, 2001. 18(8): p. 1871-1881.
13. Larkin, K.G., D.J. Bone, and M.A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,”Journal of the Optical Society of America A, 2001. 18(8): p. 1862-1870.
14. Vargas, J., Quiroga, J. Antonio., Sorzano, C. O. S., Estrada, J. C. Carazo, J. M., “Two-step interferometry by a regularized optical flow algorithm,”Optics Letters, 2011. 36(17): p. 3485-3487.
15. Du, H., H. Zhao, and B. Li, “Fast phase shifting shadow moiré by utilizing multiple light sources,”in SPIE Advanced Lithography. 2013. International Society for Optics and Photonics.
16. Xu, J., and J. Gao, “Phase Extraction by Spiral Phase Transform in Digital Shearography,”in Fringe 2013: 7th International Workshop on Advanced Optical Imaging and Metrology, W. Osten, Editor. 2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 217-220.
17. Y. Lu, R. Li, and R. Lu, “Fast demodulation of pattern images by spiral phase transform in structured-illumination reflectance imaging for detection of bruises in apples,”Computers and Electronics in Agriculture, 127 (2016), pp. 652-658.
18. 李家成,“單拍陰影疊紋法於表面形貌之量測之研究”,國立成功大學機械工程學系碩士論文,2017。
19. 程法彥,“單拍陰影疊紋表面形貌量測系統之研發”,國立成功大學機械工程學系碩士論文,2018。
20. Thomas Klinger, “Image Processing with LabVIEW and IMAQ Vision,”Pretice Hall PTR, 2003.
21. Gonzalez, Rafael C., and Richard E. Woods., “Digital image processing prentice hall,”Upper Saddle River, NJ (2002).
22. Hariharan, P., B.F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,”Applied Optics, 1987. 26(13): p. 2504-2506.
23. Lin J., and Su X., “Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes,”Opt. Eng. 34 3297-302, 1995.
24. Gómez-Pedrero, J.A., Quiroga, Juan A., José Terrón-López, M., Crespo, Daniel., “Measurement of surface topography by RGB Shadow-Moiré with direct phase demodulation,”Optics and Lasers in Engineering, 2006. 44(12): p. 1297-1310.
25. Quiroga, J.A., Gómez-Pedrero, José A., Terrón-López, M. José., Servin, Manuel., “Temporal demodulation of fringe patterns with sensitivity change,”Optics Communications, 2005. 253(4-6): p. 266-275.
26. Felsberg, M. and G. Sommer, “The monogenic signal,”IEEE Transactions on Signal Processing, 2001. 49(12): p. 3136-3144.
27. Horn, B.K.P., and B.G. Schunck, “Determining optical flow. Artificial Intelligence,”1981. 17(1): p. 185-203.
28. Macy, W.W., “Two-dimensional fringe-pattern analysis,”Applied Optics, 1983. 22(23): p. 3898-3901.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-06-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-06-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw