進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2907201914402200
論文名稱(中文) 彰濱離岸風域紊流特性研究
論文名稱(英文) A study on the characteristic of wind turbulence offshore in Changhua area
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 107
學期 2
出版年 108
研究生(中文) 林翁瀚
研究生(英文) Weng-Han Lin
學號 P46064338
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 指導教授-苗君易
口試委員-呂宗行
口試委員-周榮華
口試委員-蔡原祥
中文關鍵字 大氣紊流  總體經驗模態分解法  頻譜圖  機率密度函數圖 
英文關鍵字 Offshore wind power  Atmospheric turbulence  PDF  HHT  EEMD 
學科別分類
中文摘要 本研究以彰化外海兩座海氣象觀測塔實地量測,針對所觀測到的二十三個月與一筆登陸颱風資料進行風速數據分析。經由計算平均風速、風向等風特徵參數來選定具代表性的風況案子,並計算其紊流強度,此外本研究透過總體經驗模態分解法來將風速資料進行去趨勢,以此來進行機率密度函數圖與頻譜圖的繪製,以探討不同天氣形態下大氣紊流中尺度渦流的特性。
由於大氣紊流會受到風速不穩定的影響而有趨勢項、紊流強度過大與大尺度擾動主導等特徵,進而導致分析上的困難。透過梅姬颱風有無去趨勢的比較,證實了在沒有經過去趨勢風速變化大的時間段中,繪製出來的機率密度函數圖會有奇怪的分布,不符合高斯分布。在東北季風與西南季風的頻譜圖中,也會因為風況的不穩定而造成與理論慣性次階的-5/3斜率不一致。本研究分別以機率密度函數圖與頻譜圖訂定大氣紊流在穩定狀態下所發生的峰度值、偏度值與斜率範圍。
英文摘要 Offshore wind energy is one of the popular power resources to solve the global energy crisis. Wind turbine blades are strongly influenced by turbulence structure and small scale turbulence fluctuation is the main cause of structure damage. This enhances the importance of understanding the characteristics of wind turbulence to prevent wind turbines from damages. In this study, wind data was collected from the meteorological mast located at offshore of Changhua, Taiwan, at a sampling rate of 1 Hz. Data set was collected from two periods of Aug. 16, 2016 to June 22, 2017 and Dec. 1, 2017 to Nov. 30, 2018 while monsoons and typhoons extreme conditions occurred.
HHT uses the empirical mode decomposition (EMD) and adds white noises to become the ensemble empirical mode decomposition (EEMD), which has the ability to analyse the non-linear and unsteady data, e.g. atmospheric turbulence. During this process, the signal is decomposed into a series called intrinsic mode function (IMF). In this study, trend and low frequency IMF are not considered in this study and the rest is analysed by Probability Density Function (PDF) and Fast Fourier Transform (FFT) in order to find the characteristic of ideal turbulence.
論文目次 摘要 II
誌謝 XII
目錄 XIII
表目錄 XVII
圖目錄 XVIII
符號索引 XXIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 5
1.3.1 理想紊流 5
1.3.2 泰勒凍結假設(Taylor's hypothesis of frozen turbulence) 6
1.3.3 颱風環流特性 7
1.3.4 大氣紊流能譜與特徵 8
第二章 儀器設備與氣候概況 14
2.1 海測塔A 14
2.1.1 位置、設備架設概況 14
2.1.2 觀測氣候概況 15
2.2 海測塔B 16
2.2.1 位置、設備架設概況 16
2.2.2 觀測氣候概況 17
第三章 研究方法 19
3.1 風速資料分割方法 19
3.1.1 海測塔A 19
3.1.2 海測塔B 20
3.2 希爾伯特-黃轉換(Hilbert–Huang transform, HHT) 22
3.2.1 本質模態函數 23
3.2.2 總體經驗模態分解法 24
3.3 紊流強度(Turbulence Intensity) 27
3.4 機率密度函數(Probability Density Function, PDF) 28
3.5 紊流頻譜圖(Power Spectrum) 32
第四章 結果與討論 36
4.1 風速資料分割結果 36
4.1.1 梅姬颱風瞬時風速與風向 36
4.1.2 梅姬颱風紊流擾動時序圖 39
4.1.3 海測塔B各月風花圖 40
4.1.4 海測塔B各案子統計結果 43
4.2 紊流強度 45
4.2.1 梅姬颱風各小時紊流強度 45
4.2.2 海測塔B各案子紊流強度 46
4.3 機率密度函數圖 47
4.3.1 梅姬颱風機率密度分布圖 47
4.3.2 海測塔B各案子機率密度分布圖 50
4.4 頻譜圖 52
4.4.1 梅姬颱風頻譜圖 52
4.4.2 海測塔B風速資料頻譜圖 54
4.5 特殊狀況綜合討論 57
4.5.1 機率密度函數圖極端風況舉例介紹 57
4.5.2 梅姬颱風有無趨勢比較 61
4.5.3 風速轉換期間 66
4.5.4 IMF 1~9濾波不完全狀況 69
4.5.5 紊流強度過大狀況 73
第五章 結論與未來建議 76
5.1 結論 76
5.2 未來建議 78
參考文獻 79
附錄A 風杯式風速計規格 83
附錄B 風向計規格 85
附錄C 海測塔A架設方位概況 87
附錄D 海測塔B架設方位概況 88
附錄E 總體經驗模態分解法流程圖 89
附錄F 梅姬颱風每小時風況資料 90
參考文獻 [1] 4C. Offshore. "Global Offshore Wind Speed Rankings."
[2] L. F. Richardson, 1922: Weather prediction by Numerical process. Cambridge University Press.
[3] P. Mason, “Atmospheric boundary layer flows: Their structure and measurement,” Boundary-Layer Meteorology, vol. 72, no. 1, pp. 213-214, 1995/01/01, 1995.
[4] A. O. Juan Pablo Pérez Beaupuits , Fredrik T. Rantakyrö , Roberto C. Rivera , Simon J. E. Radford , Lars-Åke Nyman, Analysis of wind data gathered at chajnantor. 2004 pp. 1.
[5] Z. S. N. E. Huang, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,.
[6] WWEA. "Wind power capacity worldwide reached 600 GW, 53.9 GW added in 2018."
[7] 台灣電力公司. 再生能源發電簡介. 2019
[8] GWEC, A Snapshot of Top Wind Markets in 2017 Offshore Wind, 2017.
[9] S. Tronaes Frandsen, Turbulence and Turbulence-Generated Structural Loading In Wind Turbine Clusters, 2007.
[10] IEC, “Wind turbines –part 12–1: Power performance measurements of electricity producing wind turbines," International Electrotechnical Commission, ed., 2005.
[11] P. D. Torino, Homogeneous and isotropic turbulence, Reλ=230: snapshot of the enstrophy distribution in logarithmic scale.
[12] J. Berg, A. Natarajan, J. Mann, and E. G. Patton, Gaussian vs non-Gaussian turbulence: Impact on wind turbine loads, 2016.
[13] M. Wilczek, A. Daitche, and R. Friedrich, “On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity,” Journal of Fluid Mechanics, vol. 676, pp. 191-217, 2011.
[14] A. Morales, M. Wächter, and J. Peinke, Characterization of wind turbulence by higher-order statistics, 2012.
[15] F. Boettcher, C. H. Renner, H. P. Waldl, and J. Peinke, “On the Statistics of Wind Gusts,” Boundary-Layer Meteorology, vol. 108, no. 1, pp. 163-173, 2003/07/01, 2003.
[16] G. I. Taylor, The Spectrum of Turbulence, 1938.
[17] T. D. Schlipf D, Bischoff O, Hofsäß M, Mann J, Mikkelsen T, Rettenmeier A, Trujillo JJ, Kühn M. Testing of, Symposium, and for the Advancement of Boundary Layer Remote Sensing.
[18] S. Bhattacharya, L. Arany, J. macdonald, and S. Hogan, "2014 Wind Energy online," 2014.
[19] G. Hakim, "An Introduction to Dynamic Meteorology (Fifth Edition)," J. R. Holton and G. J. Hakim, eds., pp. xv-xvi, Boston: Academic Press, 2013.
[20] A. G. C. B. Yu, and F. J. Masters, “Hurricane wind power spectra and cospectra, ” Boundary- layer meteorology, vol. 129, no. 3, pp. 411-430, 2008.
[21] L. D. Landau, Lifshitz, E. M., 1987: Fluid mechanics, 2nd edition, Pergamon press.
[22] A. S. Monin, Yaglom, A. M., 1975: Statistical fluid mechanics: Mechanics of Turbulence, Volume II, Dover publications, New York.
[23] G. I. Taylor, “Eddy motion in the atmosphere,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 215, no. 1-26, 1915.
[24] M. Shiotani, “Some notes on the structure of wind in lowest layer o M. Shiotani,” Journal of the Meteorological Society Japan. Ser. II, vol. 31, no. 10, pp. 327-335, 1953.
[25] M. Rotach, and E. Technische Hochschule Zürich, Turbulence within and above an urban canopy 1991.
[26] R. J. Barthelmie, B. Grisogono, and S. C. Pryor, “Observations and simulations of diurnal cycles of near-surface wind speeds over land and sea,” Journal of Geophysical Research: Atmospheres, vol. 101, no. D16, pp. 21327-21337, 1996/09/27, 1996.
[27] W. Schlez, “Voltage fluctuations caused by groups of wind turbines,” 2000.
[28] Y. Q. Xiao, L. Li, and L. L. Song, Study on typhoon wind characteristics based on field measurements, 2009.
[29] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, "The Wind Energy Handbook," 2001.
[30] 陳柏中, 東北季風與颱風大氣紊流尺度之探討, 成功大學航空太空工程學系學位論文. 2017, 成功大學. p. 1-150.
[31] Taiwan Generations Corporation.
[32] Taiwan Central Weather Bureau.
[33] 離岸海氣象觀測塔監測資料庫建置與應用模組開發(I)期末報告. 2017, 台灣電力股份有限公司.
[34] Taipower Offshore Met Mast Wind Direction Alignment Report, RCETS17050302, Research Center for Energy Technology and Strategy, National Cheng Kung University.
[35] J. Wagner, “Stochastic description of the turbulent cascade in wind speed data under typhoon conditions”, Master thesis of Carl von Ossietzky University Oldenburg, 2017.
[36] N. Huang, Z. Shen, and S. R. Long, A new view of non-linear water waves: The Hilbert Spectrum, 2003.
[37] P. Flandrin, and P. Gonçalves, Empirical Mode Decompositions as data-driven wavelet-like expansions, 2011.
[38] G. Rilling, P. Flandrin, and P. Gonçalves, On empirical mode decomposition and its algorithms. IEEE-EURASIP workshop on nonlinear signal and image processing. NSIP-03, 2003.
[39] Z. a. H. Wu, N.E., Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method, Advances in Adaptive Data Analysis, 1(1), 1-41, World Scientific Publishing Company, 2008
[40] 林俶寬, 有關總體行經驗模態分解法(EEMD)應用於波動時序訊號的討論. 第36屆海洋工程研討會論文集, 國立交通大學, 2014.
[41] N. Huang, M. L. C. Wu, S. R. Long, S. Shen, W. D. Qu, P. Gloersen, and K. L. Fan, A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, 2003.
[42] G. Rilling, and P. Flandrin, “One or Two Frequencies? The Empirical Mode Decomposition Answers,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 85-95, 2008.
[43] L. Breiman, 1968: Probability. Addison-Wesley, Boston.
[44] B. Castaing, Gagne, Y., Hopfinger, E. J., 1990: Velocity probability density functions of high Reynolds number turbulence, Physica, D 46, 177.
[45] S.B. Pope, "The statistical description of turbulent flows, in Turbulent Flows," Editor. 2000, Cambridge University Press: Cambridge. p. 34-82.
[46] A. N. Kolmogorv, 1941: The local structure of turbulence in an incompressible viscous fluid for very high Reynolds numbers, Doklady Akademii Nauk SSSR 30, 301.
[47] J. M. McDonough, (2007). "Introductory Lectures on Turbulence – Physics, Mathematics, and Modeling". University of Kentucky "
[48] J. R. Chasnov, “Simulation of the Kolmogorov inertial subrange using an improved subgrid model". Physics of Fluids A Fluid Dynamics, 1991. 3.
[49] S. Y. Huang, Z. Lu, Y. Liu, “An amplitude-frequency study of turbulent scaling intermittency using Empirical Mode Decomposition and Hilbert Spectral Analysis,” Europhysics Letters 84 (2008).
[50] H. S. Kang, S. Chester, C. Meneveau, "Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation", J. Fluid Mech. 480, 129-160, 2003
[51] U. Frisch , “Turbulence: the legacy of AN Kolmogorov (Cambridge University Press) ”, 1995.
[52] J. C. Kaimal, J. C. Wyngaard, Y. Izumi, and O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Quarterly Journal of the Royal Meteorological Society, vol. 98, no. 417, pp. 563-589, 1972/07/01, 1972.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw