進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2907201614063700
論文名稱(中文) 磊晶成長釹鈰銅氧及鐵酸鉍薄膜
論文名稱(英文) Epitaxial Growth of Nd1.85Ce0.15CuO4 and BiFeO3 Thin Films
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 莊椀婷
研究生(英文) Wan-Ting Chuang
學號 N56034431
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-齊孝定
口試委員-郭瑞昭
口試委員-劉浩志
口試委員-張高碩
中文關鍵字 釹鈰銅氧  鐵酸鉍  射頻磁控濺鍍  脈衝雷射沉積 
英文關鍵字 Nd1.85Ce0.15CuO4  BiFeO3  RF Magnetron Sputtering  Pulsed Laser Deposition 
學科別分類
中文摘要 鐵酸鉍(BiFeO3)是目前多鐵性材料研究的重點之一,在室溫下單一相中同時具有鐵電性和反鐵磁性,可運用在記憶體、感測器、微機電系統等電子元件上,不過目前常見的底電極材料如釕酸鍶(SrRuO3)和鎳酸鑭(LaNiO3)等,仍有成本或界面擴散等問題尚待克服,故本研究嘗試成長釹鈰銅氧(Nd1.85Ce0.15CuO4)之薄膜,期望未來有機會作為鐵酸鉍的底電極使用。本論文詳細討論兩種不同技術在成長Nd1.85Ce0.15CuO4薄膜時所遇到的問題,並嘗試在 Nd1.85Ce0.15CuO4薄膜上成長BiFeO3薄膜。
實驗中使用的靶材均以固相反應法燒結而成,所用基板爲(001)取向之鈦酸鍶(SrTiO3)單晶,Nd1.85Ce0.15CuO4薄膜透過射頻磁控濺鍍和脈衝雷射沉積兩種方法製備,而BiFeO3薄膜則僅透過射頻磁控濺鍍製備。為了成長Nd1.85Ce0.15CuO4磊晶薄膜,嘗試了許多成長方式,例如於高溫沉積時直接成相,室溫成長並進行後續退火處理,使用不同化學計量比例的靶材,等等。本研究還比較射頻磁控濺鍍和脈衝雷射沉積的薄膜品質,結果顯示,以脈衝雷射沉積較有機會獲得沿c軸成長的純相Nd1.85Ce0.15CuO4薄膜,不會產生在射頻磁控濺鍍時常常出現的二次相Nd0.5Ce0.5O1.75,而製程又以使用正常化學計量比之靶材於室溫沉積,再經由後續高溫退火成相的Nd1.85Ce0.15CuO4薄膜結晶性較佳,其X-ray繞射(004)峰半高寬僅為0.134°,且薄膜表面平整度高,表面粗糙度值1.53nm,室溫下薄膜電阻率8.163×10-2Ω•cm,電阻值隨溫度下降而降低,屬金屬型導電特性。
由於Nd1.85Ce0.15CuO4晶格常數介於BiFeO3和SrTiO3之間,且室溫下導電性佳,表面化學穩定性高,理論上是BiFeO3的理想底電極,故嘗試於Nd1.85Ce0.15CuO4薄膜上濺鍍BiFeO3,初步結果證實BiFeO3可沿著Nd1.85Ce0.15CuO4薄膜的(001)晶面成長。
英文摘要 In this study, we attempted to grow epitaxial Nd1.85Ce0.15CuO4 (NCCO) film on the (001) SrTiO3 substrate as the bottom electrode for the growth of the multiferroic BiFeO3 (BFO) film. The NCCO and BFO targets used for the deposition were prepared by the solid state reaction method. Both the RF magnetron sputtering and pulsed laser deposition (PLD) methods were studied for the NCCO film growth, while the growth of BFO films was only attempted by the sputtering method. Various efforts were made in order to obtain the epitaxial NCCO films, including direct formation of the desired phase at the heated substrate, deposition at room temperature (RT) followed by the post-annealing at high temperature, and varying the target composition in favor of some elements. The optimal NCCO films were obtained with the PLD method, which were deposited at RT from a stoichiometric target and then annealed in air at 950 C for 2 hours. The films grown by such a PLD process were epitaxial and showed a full width at half maximum of 0.134。 in the X-ray diffraction (004) rocking curve. They had a pure phase and were absent of the secondary phase, Nd0.5Ce0.5O1.75, which was often observed in the NCCO films grown by the sputtering method. The electric measurement showed that the resistivity of the PLD grown NCCO films decreased as the temperature decreased, i.e. a metallic behavior, with the RT value being 8.163×10-2 Ω.cm, which is good enough as the electrode. Furthermore, the surface roughness of the PLD grown NCCO films was 1.53 nm, suitable for the subsequent growth of BFO. Attempts have been made to grow epitaxial BFO film on NCCO. The preliminary results were encouraging, which showed that (001) oriented BFO was able to grown on the (001) NCCO film surface.
論文目次 摘要 II
Extended Abstract IV
致謝 X
目錄 XI
表目錄 XIV
圖目錄 XVI
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章 原理與文獻回顧 5
2-1釹鈰銅氧Nd1.85Ce0.15CuO4 5
2-1-1晶體結構 5
2-1-2材料特性 6
2-1-3薄膜製程 8
2-2鐵酸鉍BiFeO3 10
2-2-1晶體結構 10
2-2-2材料特性與薄膜製程技術 12
2-3磊晶薄膜成長 14
2-4射頻磁控濺鍍 17
2-4-1原理介紹 17
2-4-2設備簡介 19
2-5脈衝雷射沉積系統簡介 21
第三章 實驗流程與分析方法 25
3-1實驗流程 25
3-1-1固相反應法製作氧化物靶材 25
3-1-2基板清潔 27
3-1-3薄膜製程 28
3-2實驗藥品 29
3-3材料分析儀器 30
3-3-1X光繞射儀(X-ray Diffractometer) 30
3-3-2掃描式電子顯微鏡(Scanning Electron Microscope) 36
3-3-3霍爾效應量測系統(Hall Effect Measurement System) 37
3-3-4表面粗度儀(Alpha-step Profilometer) 40
3-3-5原子力顯微鏡(Atomic Force Microscope) 41
3-3-6電阻對溫度量測 43
第四章 結果與討論 44
4-1釹鈰銅氧靶材製備與分析 44
4-1-1 Stoichiometric靶材 44
4-1-2 Cu-enriched靶材 48
4-2射頻磁控濺鍍成長Nd1.85Ce0.15CuO4磊晶薄膜 52
4-2-1 Stoichiometric靶材 52
4-2-2 Cu-enriched靶材 66
4-3脈衝雷射沉積成長Nd1.85Ce0.15CuO4磊晶薄膜 71
4-3-1 Stoichiometric靶材 71
4-3-2 Cu-enriched靶材 77
4-4射頻磁控濺鍍成長BiFeO3磊晶薄膜 84
4-5磊晶成長BiFeO3/Nd1.85Ce0.15CuO4薄膜 89
第五章 結論 91
第六章 參考文獻 93

參考文獻 [1]Nicola A. Spaldin, Manfred Fiebig, The Renaissance of Magnetoelectric Multiferroics, Science 309 (2005) 391-392
[2]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Science 299 (2003) 1719-1722
[3]H. W. Jang, D. Ortiz, S. H. Baek, C. M. Folkman, R. R. Das, P. Shafer, Y. B. Chen, C. T. Nelson, X. Q. Pan, R. Ramesh, C. B. Eom, Domain Engineering for Enhanced Ferroelectric Properties of Epitaxial (001) BiFeO Thin Films, Advanced Materials 21 (2009) 817-823
[4]B. Jiang, X. L. Li, H. Y. Zhang, W. Sun, J. J. Liu, G. D. Hu, Large and stable piezoelectric response in Bi0.97Nd0.03FeO3 thin film, Applied Physics Letters 100 172904 (2012)
[5]P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3, Journal of Physics C: Solid State Physics 13 (1980) 1931-1940
[6]Popov, Yu. F., Kadomtseva, A. M., Vorobev, G. P. and Zvezdin, A. K., Discovery of the linear magnetoelectric effect in magnetic ferroelectric BiFeO3 in a strong magnetic field, Ferroelectric 162 (1994) 135-140
[7]G. Catalan, J.F. Scott, Physics and Applications of Bismuth Ferrite, Advanced Materials 21 (2009) 2463-2485
[8]L.W. Martin, Y.H. Chu, R. Ramesh, Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films, Materials Science and Enineering R 68 (2010) 89-133
[9]Hanfei Zhu, Limin Kang, Menglin Liu, Jun Ouyang, Single-crystal oxide substrate dependent electrical properties of sputtered BiFeO3 thin films, Materials Letters 174 (2016) 57-60
[10]Shahzad Hussain, S.K.Hasanain, G.Hassnain Jaffari, S.Ismat Shah, Thickness dependent magnetic and ferroelectric properties of LaNiO3 buffered BiFeO3 thin films, Current Applied Physics 15 (2015) 194-200
[11]林蔚叡, 博士論文, 以鐵酸鉍複鐵式材料為釘札層製作全氧化物自旋閥之研究, 成功大學材料科學及工程學系 (2014)
[12]W.T. Lin, Y.F. Chen, Oxygen pressure dependence of in situ growth of NdCeCuO thin films by laser ablation, Applied Physics Letters 64 (1994) 2157
[13]A. Gupta, G. Koren, C.C. Tsuei, A. Segmuller, T.R. McGuire, Deposition of epitaxial thin films of Nd1.85Ce0.15CuO4-y by laser ablation, Applied Physics Letters 55 (1989) 1795-1797
[14]李秉樺, 碩士論文, 以射頻磁控濺鍍製備釹鈰銅氧氧化物和鐵酸鉍之薄膜特性, 成功大學材料科學及工程學系 (2015)
[15]Y.Tokura, H.Takagi, S.Uchida, A superconducting copper oxide compound with electrons as the charge carries, Nature 337 (1989) 345-347
[16]M.B.Maple, High Tc Oxide Superconductors, MRS Bull Vol 14 (1989) 20-24
[17]Andrei Mourachkine, Room-temperature Superconductivity, Cambridge Int Science (2004)
[18]N.P. Bansal, A.L. Sandkuhl, Chemical durability of high temperature superconductor YBa2Cu3O7-x in aqueous environments, Applied Physics Letters, 52 (1988) 323
[19]J.D. Verhoeven, A.J. Bevolo, R.W. McCallum, E.D. Gibson, M.A. Noack, Auger study of grain boundaries in large-grained YBa2Cu3Ox , Applied Physics Letters, 52 (1988) 745
[20]M.S. Jahan, D.W. Cooke, H. Sheinberg, J.L. Smith and D.P. Lianos, Environmental effects on luminescence yield of superconducting YBa2Cu3Ox, Journal of Materials Research, 4 (1989) 759-762
[21]R.P. Vasquez, A. Gupta, A. Kussmaul, X-ray photoelectron spectroscopy study of chemically-etched Nd-Ce-Cu-O surfaces, Solid State Communications, 78 (1991) 303-306
[22]Isao Tanaka, Naoki Komai, Hironao Kojima, Phase equilibrium in the Nd-Ce-Cu-O system, Physica C: Superconductivity, 190 (1991) 112-113
[23]S. N. Mao, X. X. Xi, S. Bhattacharya, Qi Li, T. Venkatesan, J. L. Peng, R. L. Greene, Jian Mao, Dong Ho Wu, S. M. Anlage, Deposition and reduction of Nd1.85Ce0.15CuO4−y superconducting thin films, Applied Physics Letters 61, (1992) 2356
[24]A. Kussmaul, J. S. Modera, P. M. Tedrow, A. Gupta, Improved laser-ablated thin films of NdCeCuO by use of N2O, Applied Physics Letters 61 (1992) 2715-2717
[25]H.Yamamoto, M.Natio, H.Sato, Surface and Interface study on MBE-grown Nd1.85Ce0.15CuO4 thin films by photoemission spectroscopy and tunnel spectroscopy, Physica C: Superconductivity 282-287 (1997) 965-966
[26]M. Naito, S. Karimoto, A. Tsukada, Epitaxy-stabilized n-type superconducting cuprates, Superconductor Science and Technology 15 (2002) 1663-1668
[27]A. Guarino, G.Patimo, A. Vecchione, T.Di Luccio, A.Nigro, Fabrication of superconducting Nd2-XCexCuO_(4±δ) films by automated dc sputtering technique, Physica C: Superconductivity 495 (2013) 146-152
[28]Anita Guarino, Rosalba Fittipaldi, Alfonso Romano, Antonio Vecchione, Angela Nigro, Correlation between structural and transport properties in epitaxial films of Nd2 − xCexCuO4 ± δ, Thin Solid Films 524 (2012) 282-289
[29]H. Adachi, S. Hayashi, K. Setsune, S. I. Hatta, T. Mitsuyu, K. Wasa, Superconducting (Nd,Ce)2CuO4 thin films grown by rf magnetron sputtering, Applied Physics Letters 54 (1989) 2713
[30]S.Saitoh, M. Hiratani, K. Miyauchi, Superconducting Thin Film of (Nd,Ce)2CuO4-y, Japanese Journal of Applied Physics 28 (1989) 975-977
[31]H. Haensel, A. Beck, F. Gollnik, R. Gross, R. P. Huebener, K. Knorr, Fabricaion and electrical transport properties of epitaxial Nd1.85Ce0.15CuO4-y films, Physica C: Superconductivity 244 (1995) 389-399
[32]K. Setsune, S. Hayashi, H. Adachi, K. Hirochi, S. Kohiki, S. Hatta, K. Wasa, Superconducting thin films of n-type copper oxide prepared by rf magnetron sputtering, Vacuum 41 (1990) 864-866.
[33]S.Hayashi, H.Adachi, K.Setsune, T.Hirao, K.Wasa, Superconductivity in Nd-Ce-Cu-O Thin Films, Japanese Journal of Applied Physics, 28 (1989) 962
[34]Y. F. Guo, L. M. Chen, P. G. Li, J. Q. Shen, X. Guo, M. Lei, W. H. Tang, Different parameters for the deposition of La1.85Sr0.15CuO4 and Nd1.85Ce0.15CuO4 superconducting films by the novel pulsed electron deposition technique, Physica C: Superconductivity 453 (2007) 64-69
[35]Guo. YF, Chen. LM, Guo. X, Li. PG, Lei. M, Tang. WH, Factors affecting by the pulsed electron deposition technique, SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY
[36]J. H. Lee, M. A. O, H. J. Choi, J. Y. Son, H. M. Jang, Rhombohedral-orthorhombic morphotropic phase boundary in BiFeO3-based multiferroics: first-principles prediction, Journal of Materials Chemistry 22 (2012) 1667-1672
[37]H. Naganuma, Multifunctional Characteristics of B-site Substituted BiFeO3Films, Department of Applied Physics, Graduate school of Engineering, Tohoku University, Japan (2011)
[38]J. Lu, A. Günther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V. D. Travkin, A. A. Mukhin, A. Loidl, On the room temperature multiferroic BiFeO3: Magnetic, dielectric and thermal properties, The European Physical Journal B 75 (2010) 451-460
[39]J. R. Teague, R. Gerson, W. J. James, Dielectric hysteresis in single crystal BiFeO3, Solid State Communications 8 (1970) 1073-1074
[40]Ueda. Kenji, Tabata. Hitoshi, Kawai. Tomoji, Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature, Applied Physics Letters 75 (1999) 555
[41]X. Qi, J. Dho, R. Tomov, M. G. Blamire, J. L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3, Applied Physics Letters 86 (2005) 062903
[42]G.H. Dong, G.Q. Tan, Y.Y. Luo, W.L. Liu, H.J. Ren, A. Xia, Optimization of the multiferroic BiFeO3 thin films by divalent ion (Mn, Ni) co-doping at B-sites, Materials Letters 118 (2014) 31-33
[43]K.Y. Yun, M. Noda, M. Okuyama, Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition, Applied Physics Letters 83 (2003) 3981-3983
[44]M. I. Morozov, N. A. Lomanova, V. V. Gusarov, Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides, Russian Journal of General Chemistry 73 (2003) 1676-1680
[45]K. Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, K. Saito, Structural and multiferroic properties of BiFeO3 thin films at room temperature, Journal of Applied Physics 96 (2004) 3399-3403
[46]Y. P. Wang, L. Zhou , M. F. Zhang, X. Y. Chen, J. M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Applied Physics Letters 84 (2004) 1730-1733
[47]B. Ruette, MS thesis, Virginia Tech (2003)
[48]J.G. Wu, J. Wang, BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si(100) substrates, Acta Materialia 58 (2010) 1688-1697
[49]L.W.Martin, Y.H.Chu, R.Ramesh, Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films, Materials Science and Engineering R 68 (2010) 89-133
[50]田民波,薄膜技術與薄膜材料Thin film technology and materials,五南 (2007)
[51]D.Geohegan, D.Chrisey, G.Hubler, Pulsed Laser Deposition of Thin Films, eds DB Chrisey, GK Hubler, John Wiley & Sons Inc (1994) 148
[52]B.D.Cullity, Elements of X-ray Diffraction, Addison-Wesley Third Edition (1967)
[53]D. Prasad Beesabathina, L. Salamanca-Riba, S. N. Mao, X. X. Xi , T. Venkatesan, Microstructure of laser-deposited superconducting Nd1.85Ce0.15CuO4-y films, Applied Physics Letters 62 (1993) 3022-3024
[54]X. Qi, W. C. Chang, J. C. Kuo, I. G. Chen, Y. C. Chen, C. H. Ko, J. C. A. Hung, Growth and characterisation of multiferroic BiFeO3 films with fully saturated ferroelectric hysteresis loops and large remanent polarisations, Journal of the European Ceramic Society 30 (2010) 283-287
[55]X. Qi, P. C. Tsai, Y. C. Chen, C. H. Ko, J. C. A. Hung and I. G. Chen, Ferroelectric properties and dielectric responses of multiferroic BiFeO3 films grown by RF magnetron sputtering , Journal of Physics D: Applied Physics 41 (2008) 232001
[56]X. Qi, P. C. Tsai, Y. C. Chen, Q. R. Lin, J. C. A. Hung, Optimal growth windows of multiferroic BiFeO3 films and characteristics of ferroelectric domain structures, Thin Solid Films 517 (2009) 5862-5866
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw