進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2907201523222300
論文名稱(中文) 錳摻雜於氮化鋁鎵與氮化銦鎵太陽能電池之特性探討
論文名稱(英文) Characterization of GaN-based Solar Cells with Mn-doped AlGaN or InGaN absorption layer
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 施正倫
研究生(英文) Cheng-Lun Shih
學號 L76024129
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 指導教授-許進恭
口試委員-許晉瑋
口試委員-郭政煌
口試委員-賴韋志
中文關鍵字 錳摻雜  氮化銦鎵  中間能帶  太陽能電池  相分離 
英文關鍵字 Mn-doped  AlGaN  InGaN  Intermediate band  solar cell 
學科別分類
中文摘要 本論文主要是探討具錳摻雜氮化銦鎵、氮化鋁鎵主動層應用於太陽能電池之光電特性。利用穿透、X光繞射、電致螢光、太陽能參數等對太陽能電池元件進行材料品質與特性分析,並透過外部量子效應、雙雷射照光之電壓電流特性了解中間能帶吸收特性及載子傳遞機制。
(1)Mn-doped AlGaN:AM1.5G太陽光模擬量測下,光電流有顯著增加,推估為摻雜錳後形成中間能帶,因此材料可以額外吸收中間能帶與導、價電帶能量差值之光子,實驗會進一步透過雙光子外部量子效率、雙雷射照光I-V特性,觀察中間能帶太陽能電池的載子傳遞機制。
(2)Mn-doped InGaN:AM1.5G太陽光模擬量測下並無展現出中間能帶所提供之短路電流增幅特性,推測原因可能為氮化銦鎵材料摻雜錳後會使材料品質下降與串聯電阻提高,使得元件短路電流反而下降,光電轉換效率降低,另外從低溫電致螢光頻譜中可發現摻雜錳會造成銦聚集,推測原因為氮化銦鎵磊晶成長時,錳與銦有相互競爭之現象,而形成富銦區域(In-rich),使得變溫電致螢光量測下發現有S-shape的現象,另外從變電流電致螢光也可發現隨著電流增大,其發光機制會逐漸由銦的侷限態變成價帶至導帶的載子躍遷所主導。實驗結果與分析將於本論文中詳加探討。
英文摘要 The paper was focused on the optical and electrical characteristics of GaN-based solar cells with Mn-doped AlGaN or InGaN absorption layer. At first, according to transmittance spectrum, the Mn-doped AlGaN or InGaN absorption layer exhibited that the Mn-related band was formed in the forbidden band. Therefore, apart from absorbing the photons with energy more than band gap of material, the energy that higher than the difference between the intermediate band and the valence or conduction band could also be absorbed. So we could make use of the Mn-doped absorption layer, expect to gain more photocurrent of solar cells.
In order to verify Mn-related intermediate band, we utilized the measurements of dual light source external quantum efficiency and voltage versus current density characteristics under 405 or 808nm laser illumination to analyze that electron transfer mechanism of Mn-doped AlGaN absorption layer. In terms of InGaN solar cell, there is completely different trend with AlGaN material. Because of its photocurrent of Mn-doped InGaN absorption layer was degradation, therefore, we investigated the material characterization by means of electroluminescence spectrum and the parameters of solar cell. The related details would be discussd in this thesis.
論文目次 摘要 I
英文摘要 II
誌謝 XIV
目錄 XV
表目錄 XVIII
圖目錄 XIX
第一章 序論 1
1.1 前言 1
1.2 氮化銦鎵太陽能電池簡介 2
1.3 氮化銦鎵相關特性 2
1.4 中間能帶太陽能電池簡介 3
1.5 研究動機 4
第二章 基礎理論介紹 8
2.1 太陽能電池簡介 8
2.2 太陽光譜 8
2.3 太陽能電池等效電路模型 10
2.3-1 短路電流(Isc) 11
2.3-2 開路電壓(Voc) 11
2.3-3 最大輸出功率(Pmax) 11
2.3-4 填充因子(FF) 13
2.3-5 光電轉換效率(η) 13
2.4 頻譜響應(SR) 13
2.5 外部量子效率(EQE) 14
2.6 氮化鎵摻雜錳理論背景 14
第三章 元件製程及量測機台 17
3.1 中間能帶太陽能電池結構 17
3.2 太陽能電池製程 18
3.3 量測儀器 20
第四章 量測結果與討論 25
A. 氮化鋁鎵摻雜錳中間能帶太陽能電池分析 25
4.1 穿透率量測 25
4.2 氮化鋁鎵摻雜錳中間能帶太陽能電池量測分析 25
4.2-1 太陽能電池之光電轉換特性分析 25
4.2-2 外部量子效率(EQE)量測分析 28
4.2-3 電致螢光量測分析 29
4.2-4 高聚光太陽能量測分析 30
4.2-5 雙光子(氙燈+雷射)外部量子效率量測分析 32
4.2-6 雙雷射照光之電壓電流特性量測 35
4.2-7 變溫下,氙燈照光之電壓電流特性量測 38
4.3 結果與討論(Mn-doped AlGaN) 39
B. 氮化銦鎵摻雜錳中間能帶太陽能電池分析 62
4.4 光電特性分析 62
4.4-1 順逆偏量測 62
4.4-2 AM 1.5G太陽光量測 62
4.4-3 電致螢光(EL)量測分析 64
4.4-4 變電流電致螢光 65
4.4-5 變溫電致螢光 67
4.4-6 外部量子效率 70
4.4-7 雙光子外部量子效率量測 71
4.5 結果與討論(Mn-doped InGaN) 72
第五章 結論與未來展望 84
參考文獻 86
參考文獻 [1]C. E. Fritts “On a New Form of Selenium Photocell”, American J. of Science, vol. 26, no. 156, pp. 465-472, (1883).
[2]D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, (1954)
[3]M. B. Prince, “Silicon Solar Energy Converters”, Journal of Applied Physics, vol. 26, no. 5, pp. 534-540, (1955).
[4]Joseph J. Loferski, “Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion”, Journal of Applied Physics, vol .27, no. 7, pp. 777-784, (1956).
[5]Joseph J. Wysocki and Paul Rappaport, “Effect of Temperature on Photovoltaic Solar Energy Conversion”, Journal of Applied Physics, vol. 31, no. 3, pp. 571-578, (1960).
[6]William Shockley and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, Journal of Applied Physics, vol. 32, no. 3, pp.510–519, (1961).
[7]黃惠良, 曾百亨, “太陽電池SOLAR CELLS”, 五南圖書出版, (2008).
[8]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, W. J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN”, Applied Physics Letters, vol. 80, no. 21, pp. 3967-3969, (2002).
[9]R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition”, Applied Physics Letters, vol. 70, no. 9, pp. 1089-1091, (1997).
[10]N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition”, Applied Physics Letters, vol. 72, no. 1, pp. 40-42, (1998).
[11]Antonio Luque and Antonio Martı´, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Physical Review Letters, vol. 78, no. 26, pp. 5014-5017, (1997).
[12]Antonio Martí, Lucas Cuadra, and Antonio Luque, “Partial filling of a quantum dot intermediate band for solar cells”, Electron Devices, IEEE Transactions on, vol. 48, no. 10, pp. 2394-2399, (2001).
[13]Luque, A., Marti, A. and Colin Stanley , “Understanding intermediate-band solar cells”, Nature Photonics, vol. 6, no. 3, pp.146–152, (2012)..
[14]J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil , “Titanium doped silicon layers with very high concentration”, Journal of Applied Physics, vol. 104, no. 1, pp. 016105, (2008).
[15]K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, “Multiband GaNAsP quaternary alloys”, Applied Physics Letters, vol. 88, no. 9, pp. 092110, (2006).
[16]Wang, W., Lin, A. S. and Phillips, J. D. , “Intermediate-band photovoltaic solar cell based on ZnTe:O ”, Applied Physics Letters, vol. 95, no. 1, pp. 011103, (2009).
[17]N. Lopez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Physical Review Letters, vol. 106, no. 2, pp. 028701, (2011).
[18]A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, et al,. “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cell,” Solar Energy Materials and Solar Cells, vol. 93, no. 5, pp. 641-644, (2009).
[19]R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Applied Physics Letters, vol. 80, no. 10, pp. 1731, (2002)
[20]N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Applied Physics Letters, vol. 91, no. 24, pp. 242502, (2007).
[21]A. Luque and S. Hegedus, “Handbook of Photovoltaic Science and Engineering” Wiley England, (2002)
[22]黃泯舜, “提升氮化銦鎵太陽能電池轉換效率之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2010).
[23]劉宇軒, “錳摻雜於氮化鎵系列材料之光電特性研究與元件應用”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
[24]P. Boguslawski and J. Bernholc, “Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N”, Physical Review B, vol. 72, no. 11, pp. 115208, (2005).
[25]T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Applied Physics Letters, vol. 81, no. 27, pp. 5159-5161, (2002).
[26]R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B, vol. 308, pp. 30-33, (2001).
[27]F. E. Arkun, A. M. Mahros, N. A. El-Masry, J. Muth, X. Zhang, J. M. Zavada, and S. M. Bedair, “Optical Transmission Measurements on MOCVD Grown GaMnN Films on Sapphire”, Materials Research Society Symposia Proceedings, vol. 955, p.0955-I07-02, (2006).
[28]黃鋒文, “氮化鎵系列摻雜錳之材料特性與元件應用”, 國立成功大學光電科學與工程研究所, 博士論文, (2010).
[29]李佳輝, “氮化鎵摻雜錳應用於中間能帶太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2012).
[30]鄭宗昇, “氮化鎵摻雜錳應用於中間能帶太陽能電池之光電特性探討”, 國立成功大學光電科學與工程研究所, 碩士論文, (2014).
[31]“Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight, ” American Society for Testing and Materials Committee, E948-95, (2001)
[32]A.Luque, A.Martı´, E.Antolın, C.Tablero, “Intermediate bands versus levels in non-radiative recombination”, Physica B, vol. 382, no. 1-2 , pp. 320–327, (2006).
[33]Yong-Hoon Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, and S.P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells”, Applied Physics Letters, vol. 73, no. 10, pp. 1370-1372, (1998)
[34]Pablo G. Linares, Antonio Martı, , Elisa Antolın, Inigo Ramiro, Esther Lopez, Corrie D. Farmer, Colin R. Stanley, and Antonio Luque, “Low-Temperature Concentrated Light Characterization Applied to Intermediate Band Solar Cells”, vol. 3, no. 2, pp. 753-761, (2013)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw