進階搜尋


下載電子全文  
系統識別號 U0026-2907201419360400
論文名稱(中文) 高效率太陽能電池正面手指線印刷最佳化與分析
論文名稱(英文) Optimization and Analysis of Finger-line Printing on High Efficiency Solar Cells
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩士在職專班
系所名稱(英) Department of Aeronautics & Astronautics (on the job class)
學年度 102
學期 2
出版年 103
研究生(中文) 陳哲宏
研究生(英文) Che-Hung Chen
學號 P47011126
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-楊世銘
口試委員-劉育釧
口試委員-陳春志
口試委員-賴俊文
口試委員-李炯男
中文關鍵字 太陽能電池  單晶矽  網版印刷 
英文關鍵字 Solar Cell  Mono-crystalline Silicon  Screen Printing 
學科別分類
中文摘要 網印製程是現行量產太陽能電池製程中形成金屬電極的最關鍵程序。網印製程參數包括:(1)高寬精準度;(2)印刷參數監控;(3)印刷金屬導電膠特性。本研究旨在探討上列網印參數對於太陽能電池效率之影響,俾以建構穩定的製程參數監控與優良的金屬導電膠品質。本研究也針對太陽能電池網印之網版開孔高寬比,設計出高度與寬度的排列組合,透過光學顯微鏡進行確認網版開孔大小在誤差範圍±0.2 μm,經過小量測試比對各組條件在效率上差異,篩選出可達成放量測試(10K)的最佳高寬比組合,經過抽樣量測統計出其線高寬變化對效率影響(在乳劑高度固定下,每一開孔寬度縮小5μm;其效率值約可增加0.05%-0.08%),也探討金屬導電膠特性與太陽能電池效率之影響(較低的接觸電阻以提高導電性能、有效穿透氮化矽抗反射層鍍膜、優異細線印刷技術能力和及具有較寬印刷後電極燒結溫度範圍等,都是良好金屬導電膠必具備特性)。最後透過電致發光檢測印刷品質確保能以有效應用於量產太陽能電池。研究過程經網印網版量測與篩選、印刷參數模擬與調整和金屬導電膠特性評估與測試在目前太陽能廠量產網版規格組合(開孔寬度50μm搭配乳劑高度15μm)下進行優化並將最佳優化條件組合放量測試(10K)驗證再現性,最後本研究以最佳條件組合成果為使用開孔寬度40μm搭配乳劑高度15μm網版能使太陽能電池轉換效率有效的增加0.13-0.15%,網版印刷斷線率為98%。
英文摘要 Screen printing process is the most critical step to form metal electrodes on solar cells. The process parameters: (1) the aspect ratio of screen opening, (2) the printing process control parameters and (3) the viscosity of metal pastes have significant influence on performance solar cell. This work focuses on systematic process monitoring to determine the aspect ratio of screen opening such that the geometry of metal electrodes (finger/bus-bar) can be defined to improve solar cell performance. In this study, a series of aspect ratios of opening on screens in length accuracy < 0.2μm is designed to investigate their geometric effects. The screen printing on a large amount of tests (10K) combined with in-line electroluminescence inspection is conducted to validate the quality mass production. It is shown that the geometry of opening 40μm and emulsion 15μm can effectively increase the solar cells efficiency 0.13 - 0.15% with printing yield of 98%.
論文目次 中文摘要 i
SUMMARY ii
致謝 vi
目錄 vii
表目錄 ix
圖目錄 x

第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 3
1.4文獻回顧 3
第二章 基礎理論 10
2.1太陽能電池基礎理論 10
2.2太陽能電池種類 12
2.3單晶矽太陽能電池製程流程 13
2.4結語 18
第三章 自動印刷機介紹與分析儀器 34
3.1自動印刷機介紹 34
3.2實驗分析儀器 35
3.2.1光學顯微鏡(Optical Microscope) 35
3.2.2傳輸線模型(Transfer Length Method;TLM) 36
3.2.3電致發光(Electroluminescence;EL) 36
3.2.4結語 37
第四章 印刷實驗與分析 45
4.1實驗前元件製程一致性 45
4.2設定金屬電極印刷規格組合 49
4.3網印製程參數設定 54
4.4最佳組合放量測試(10K)與分析 58
4.5結語 62
第五章 結論與建議 73
參考文獻 77
參考文獻 [1] 經濟部, “一○一年年報.” 經濟部能源局, 2012.
[2] NPD, “全球前十大太陽能電池廠商產量比例2011.” NPD Solarbuzz, 2011.
[3] 李正裕, “太陽能電池電極網印製程之研究.” 國立台灣科技大學碩士論文, 2008.
[4] 古雅婷, “應用人工智慧於太陽能網印製程參數與品質特性探勘之研究.” 國立雲林科技大學碩士論文, 2013.
[5] Wohlgemuth, Narayanan, and Brenneman, “Cost effectiveness of high efficiency cell processes as applied to cast polycrystalline silicon.” 21st IEEE PVSC, Vol.1, pp. 221 – 226, 1990.
[6] Zhao, Wang, Dai, and Green, “Improvements in silicon solar cell performance.” 22st IEEE PVSC, Vol.1, pp. 399 – 402, 1991.
[7] Barki, Ramamurthy, Srivatsan, and Rani, “Low-cost approach to high-volume production and practical considerations to improving efficiency of single crystalline silicon solar cells for developing countries.” 24st IEEE PVSC, Vol.2, pp. 2365 – 2367, 1994.
[8] Nijs, Szlufcik, Poortmans, and Sivoththaman, “Advanced manufacturing concepts for crystalline silicon solar cells.” Electron Devices, IEEE Transactions, Vol.46, pp. 1948 – 1969, 1999.
[9] Itoh, Yoshida, Tokuhisa, and Ushifusa, “Screen printed finger electrode with high aspect ratio by single printing for crystal Si solar cell using novel screen mask.” 38th IEEE PVSC, pp. 2167 – 2170, 2012.
[10] Chen, Liao, Su, and Huang, “Front-side metallization with high aspect ratio by stencil printing for crystal Si solar cell.” 39th IEEE PVSC, pp. 3442 – 3444, 2013.
[11] Zhang, and Moyer, “Front contact pastes with increased aspect ratio to achieve higher efficiency on screen printed solar cells.” 34th IEEE PVSC, pp. 1321 – 132, 2009.
[12] Oh, Shim, Cho, and Lee, “An efficiency of 18.88% in selective emitter solar cells by metal pattern optimization.” 37th IEEE PVSC, pp. 2189 – 2192, 2011.
[13] Gao, Prunchak, Jäger, Hermes, Ebong, and Rohatgi, “One-step screen-printing metallization forming high aspect ratio grid lines on crystalline solar cells.” 25th EUPVSEC, pp. 2360 – 363, 2010.
[14] Chen, Church, Yang and Cooper, “Improved front side metallization for silicon solar cells by direct printing.” 37th IEEE PVSC, pp. 3667 – 3671, 2011.
[15] Chang, Su, Huang, and Cheng, “Improvement of the solar cell efficiency by fine line print on print technology.” 39th IEEE PVSC, pp. 2176 – 2178, 2013.
[16] Wijekoon, Weidman, Paak, and MacWilliams, “Production ready noval texture etching process for fabrication of single crystalline silicon solar cells.” 35th IEEE PVSC, pp. 3635 – 3641, 2010.
[17] Ebong, Upadhyaya, Kean, and Rounsaville, “Effect of surface cleaning on pyramid size of randomly textured mono crystalline silicon and the impact on solar cell efficiency” 37th IEEE PVSC, pp. 1046 – 1049, 2011.
[18] Johan, Mohamad, and Shaari, “Texturisation of single crystalline silicon solar cell.” Research and Development, IEEE Student Conference, pp. 377 – 380, 2010.
[19] Terry, Meisel, Rosenfeld, and Shah, “All screen printed 18% homogeneous emitter solar cells using high volume manufacturing equipment.” 35th IEEE PVSC, pp. 3618 – 3622, 2010.
[20] Lim, Kim, Lee, amd Seo, “Improved silver paste allows 19% efficient c-Si solar cell with homogeneous high sheet resistance POCl3 emitter.” 37th IEEE PVSC, pp. 2200 – 2203, 2011.
[21] Jiang, Moutinho, Johnston, and Yan, “Characterization of laser edge isolation in multicrystalline silicon solar cells.” 35th IEEE PVSC, pp. 1721 – 1726, 2010.
[22] Abade, Fonseca, and Mansano, “PECVD single-layer (SiN:H) and double-layer (SiN:H/SiO2) ARC on mono and multicrystalline silicon solar cells.” 28th IEEE PVSC, pp. 307 – 310, 2000.
[23] Chen, Lin, Lai, and Kuo, “Effects of advanced dual anti-reflection layer coating on crystalline silicon solar cell efficiency.” 37th IEEE PVSC, pp. 2133 – 2135, 2011.
[24] Chen, and Hsu, “Conjugated polymer nanostructures for organic solar cell applications.” Polymer Chemistry, 2, pp. 2707-2722, 2011.
[25] 陳柏穎, “矽晶圓非等向性溼式蝕刻特性研究.” 國立中山大學碩士論文, 2003.
[26] 林坤立, “單晶矽太陽電池製程及其頻譜響應之研究.” 國立雲林科技大學碩士論文, 2004.
[27] 蕭立君, “抗反射模對III-V族太陽電池量子效率之影響.” 中原大學碩士論文, 2004.
[28] Bätzner, Hanton, and Cuevas, “Investigation of the co-firing process for contact formation in screen printed silicon solar cells.” 21st EUPVSEC, pp. 807 – 810, 2006.
[29] Applied Materials, “Baccini Soft Line.” http://www.appliedmaterials.com/
[30] ZETA, “ZETA – 200 3D – OM.” http://www.zeta-inst.com/
[31] 梁忠熙, “高溫超導微波濾波器之研製與特性量測分析.” 國立中央大學碩士論文, 2003.
[32] Schroder, “Semiconductor material and device characterization.” John Wiley & Son, 1990.
[33] 陳秋惠、劉定坤, “太陽能電池之電致發光缺陷檢測技術.” 2010第十屆全國AOI論壇與展覽大會手冊, 2010.
[34] Shetty, Borelanda, Cunnusamya, Wuc, Iggoc, and Antoniadisc, “Lightly doped emitters for high efficiency silicon wafer solar cells.” Energy Procedia, Vol.33, pp. 70 – 75, 2013.
[35] 簡鈺人, “以高密度電漿化學氣相沉積系統成長與蝕刻氮化矽薄膜.” 逢甲大學碩士論文, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw