進階搜尋


下載電子全文  
系統識別號 U0026-2907201418305500
論文名稱(中文) 探討高濃度氧氣及呼吸器對早產兒之影響
論文名稱(英文) Effect of hyperoxia and mechanical ventilation on premature infants
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 102
學期 2
出版年 103
研究生(中文) 蔡文暉
研究生(英文) Wen-Hui Tsai
學號 s98901076
學位類別 博士
語文別 英文
論文頁數 93頁
口試委員 指導教授-林秀娟
指導教授-張文粲
口試委員-林毓志
口試委員-謝武勳
口試委員-陳家玉
中文關鍵字 自噬作用  肺支氣管發育不全  高濃度氧氣  機械式呼吸  神經發展預後  早產兒 
英文關鍵字 autophagy  bronchopulmonary dysplasia  hyperoxia  mechanical ventilation  neurodevelopmental outcome  premature infant 
學科別分類
中文摘要 機械式呼吸合併使用高濃度氧氣常常用來治療有不成熟肺部的早產兒。然而,機械式呼吸不可避免的會傷害肺部並且可能造成早產兒的肺支氣管發育不全。肺支氣管發育不全的特徵是肺部發育受損導致肺泡較大而數目較少,並且常常需要長期的呼吸支持。造成肺支氣管發育不全的因素包括:高濃度氧氣造成的氧氣毒性,機械式呼吸,周產期感染/發炎,和肺部不成熟。
為了研究氧氣毒性對肺支氣管發育不全的貢獻,第一個研究分析高濃度氧氣造成肺部傷害的致病機轉。我們發現高濃度氧氣會抑制A549肺上皮細胞的增殖並且導致細胞周期停滯,有趣的是,高濃度氧氣不止會導致A549細胞壞死並且會引發細胞的自噬作用。高濃度氧氣會增加細胞內的反應性氧族並且改變粒線體的膜電位。抗氧化劑N-乙醯-L-半胱胺酸可以減輕高濃度氧氣造成的A549細胞死亡。最後我們證實在新生鼠動物模式中高濃度氧氣也可以觀察到細胞的自噬作用。如果自噬作用是細胞在壓力下趨向存活的一種反應,我們的研究在臨床上有機會可以發展成對發育中的肺部受到高濃度氧氣傷害時的保護策略,例如,早產兒的肺支氣管發育不全。
很多研究指出肺支氣管發育不全與較差的神經發展預後有相關,為了進一步探討造成肺支氣管發育不全的因素對早產兒神經發展預後的影響,第二個研究使用一個全國性的大型資料庫並且回溯追踪10年來研究使用機械式呼吸的天數與1998到2001年間出生的超低出生體重早產兒(出生體重<1,000公克)各種發展性疾病的關係。在此期間共有728位在第一次住院期間沒有被診斷為腦損傷或局部性的腦部疾患的超低出生體重早產兒,分成三組(使用呼吸器的天數:≦ 2, 3-14, ≧ 15天)。經過醫療資料的校正後,使用機械式呼吸 ≧ 15天的超低出生體重早產兒比使用機械式呼吸 ≦ 2天者有較高的機會得到腦性麻痺(校正風險比: 2.66; 95%信賴區間: 1.50 - 4.59; p < 0.001)及注意力不足過動症(校正風險比: 1.95; 95%信賴區間: 1.02 - 3.76; p < 0.05) 。然而,自閉症以及智能不足的風險在3組間則沒有明顯的差異。我們的結論是超低出生體重早產兒,即使沒有明顯的腦部損傷,使用機械式呼吸 ≧ 15天,就會增加腦性麻痺以及注意力不足過動症的機會。因此,發展出一個可以即時因應大腦的血液動力學以及氧氣變化的呼吸支持策略,有機會可以進一步改善超低出生體重早產兒的神經發展預後。
英文摘要 Mechanical ventilation with hyperoxia is often needed to treat premature infants with immature lungs. However, mechanical ventilation inevitably damages the lungs and causes bronchopulmonary dysplasia (BPD) in some premature infants. BPD is characterized by larger and fewer alveoli due to impaired lung development and usually requires prolonged respiratory support. The possible contributing factors of BPD include oxygen toxicity, mechanical ventilation, perinatal infection/inflammation, and immaturity of the lungs.
To investigate the contribution of oxygen toxicity to BPD, the first study was to analyze the mechanism underlying hyperoxia-induced lung injury. We found that hyperoxia inhibited proliferation and induced cell cycle arrest in A549 pulmonary epithelial cells. Interestingly, hyperoxia induced not only necrotic cell death but also an autophagic response in A549 cells. Moreover, hyperoxia increased intracellular reactive oxygen species and altered mitochondrial membrane potential. The antioxidant N-acetyl-L-cysteine attenuated hyperoxia-induced cell death in A549 cells. Finally, the hyperoxia-induced autophagic response was confirmed in a neonatal rat model of acute lung injury. If autophagy is a prosurvival response of cells under stress, our findings may have clinical implications for the development of protective strategies against hyperoxia-induced injury in the developing lung, such as BPD in the premature infants.
Many studies have pointed out that BPD is associated with poorer neurodevelopmental outcomes. To explore the underlying mechanism of BPD that may contribute to the neurodevelopmental impairment in premature infants, the second study, which used a large nationwide database, investigated in a 10-year retrospective follow-up the association between the duration of mechanical ventilation and the risk for various developmental disorders in extremely low birth weight (ELBW) (< 1,000 g) infants born between 1998 and 2001. Seven hundred twenty-eight ELBW infants without diagnoses of brain insults or focal brain lesions in the initial hospital stay were identified and divided into three groups (days on ventilator: ≦ 2, 3-14, ≧ 15 days). After adjusting for demographic and medical factors, the infants in the ≧ 15 days group had higher risks for cerebral palsy (CP) (adjusted hazard ratio: 2.66; 95% confidence interval: 1.50-4.59; p < 0.001) and attention-deficit/hyperactivity disorder (ADHD) (adjusted hazard ratio: 1.95; 95% confidence interval: 1.02-3.76; p < 0.05), than did infants in the ≦ 2 days group. The risk for autism spectrum disorder (ASD) or intellectual disability (ID) was not significantly different between the three groups. We conclude that mechanical ventilation for ≧ 15 days increased the risk for CP and ADHD in ELBW infants even without significant neonatal brain damage. Developing a brain-protective respiratory support strategy in response to real-time cerebral hemodynamic and oxygenation changes has the potential to improve neurodevelopmental outcomes in ELBW infants.
論文目次 Dedication 2
中文摘要 3
Abstract 5
Acknowledgments 7
Contents 8
Abbreviations 10
List of Figures and Tables 13
Chapter 1. Introduction 14
1.1 Using oxygen and ventilators to manage premature infants 14
1.2 Bronchopulmonary dysplasia 14
1.3 Mechanisms of bronchopulmonary dysplasia 15
1.4 Long-term outcomes in premature infants with bronchopulmonary dysplasia 17
1.5 Preventing and treating bronchopulmonary dysplasia 19
1.6 Aims of the dissertation 21
Chapter 2. Hyperoxia induces autophagy in pulmonary epithelial cells and neonatal rat lung 23
2.1 Introduction 23
2.2 Materials and Methods 26
2.3 Results 33
2.4 Discussion 38
2.5 Figures 43
Chapter 3. Association between mechanical ventilation and neurodevelopmental disorders in a nationwide cohort of extremely low birth weight infants 57
3.1 Introduction 57
3.2 Materials and Methods 59
3.3 Results 62
3.4 Discussion 63
3.5 Tables 67
Chapter 4. Summary and Prospects 71
Cumulative Bibliography 74
Curriculum Vitae 86
Publication List 89
參考文獻 Adamson, I.Y., Hedgecock, C., and Bowden, D.H. (1990). Epithelial cell-fibroblast interactions in lung injury and repair. American Journal of Pathology 137, 385-392.
Albertine, K.H., Jones, G.P., Starcher, B.C., Bohnsack, J.F., Davis, P.L., Cho, S.C., Carlton, D.P., and Bland, R.D. (1999). Chronic lung injury in preterm lambs. Disordered respiratory tract development. American Journal of Respiratory and Critical Care Medicine 159, 945-958.
Alexandrou, G., Martensson, G., Skiold, B., Blennow, M., Aden, U., and Vollmer, B. (2014). White matter microstructure is influenced by extremely preterm birth and neonatal respiratory factors. Acta Paediatrica 103, 48-56.
Anderson, P.J., and Doyle, L.W. (2006). Neurodevelopmental outcome of bronchopulmonary dysplasia. Seminars in Perinatology 30, 227-232.
Aruoma, O.I., Halliwell, B., Hoey, B.M., and Butler, J. (1989). The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology and Medicine 6, 593-597.
Asikainen, T.M., and White, C.W. (2004). Pulmonary antioxidant defenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution: implications for antioxidant therapy. Antioxidants & Redox Signaling 6, 155-167.
Atkuri, K.R., Mantovani, J.J., and Herzenberg, L.A. (2007). N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. Current Opinion in Pharmacology 7, 355-359.
Barrington, K.J., and Finer, N.N. (1998). Treatment of bronchopulmonary dysplasia. A review. Clinics in Perinatology 25, 177-202.
Been, J.V., Rours, I.G., Kornelisse, R.F., Jonkers, F., de Krijger, R.R., and Zimmermann, L.J. (2010). Chorioamnionitis alters the response to surfactant in preterm infants. Journal of Pediatrics 156, 10-15.e11.
Bhandari, V. (2014). Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. Birth Defects Research Part A: Clinical and Molecular Teratology 100, 189-201.
Bilder, D.A., Pinborough-Zimmerman, J., Bakian, A.V., Miller, J.S., Dorius, J.T., Nangle, B., and McMahon, W.M. (2013). Prenatal and perinatal factors associated with intellectual disability. American Journal on Intellectual and Developmental Disabilities 118, 156-176.
Bose, C.L., Laughon, M.M., Allred, E.N., O'Shea, T.M., Van Marter, L.J., Ehrenkranz, R.A., Fichorova, R.N., and Leviton, A. (2013). Systemic inflammation associated with mechanical ventilation among extremely preterm infants. Cytokine 61, 315-322.
Bozynski, M.E., Nelson, M.N., Matalon, T.A., O'Donnell, K.J., Naughton, P.M., Vasan, U., Meier, W.A., and Ploughman, L. (1987). Prolonged mechanical ventilation and intracranial hemorrhage: impact on developmental progress through 18 months in infants weighing 1,200 grams or less at birth. Pediatrics 79, 670-676.
Brown, N.C., Doyle, L.W., Bear, M.J., and Inder, T.E. (2006). Alterations in neurobehavior at term reflect differing perinatal exposures in very preterm infants. Pediatrics 118, 2461-2471.
Buck, C. (2003). 2001 ICD-9-CM (Vols. 1–3). New York: WB Saunders.
Budinger, G.R., Tso, M., McClintock, D.S., Dean, D.A., Sznajder, J.I., and Chandel, N.S. (2002). Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. Journal of Biological Chemistry 277, 15654-15660.
Carter, W.O., Narayanan, P.K., and Robinson, J.P. (1994). Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. Journal of Leukocyte Biology 55, 253-258.
Charafeddine, L., D'Angio, C.T., and Phelps, D.L. (1999). Atypical chronic lung disease patterns in neonates. Pediatrics 103, 759-765.
Chen, C.Y., Liu, C.Y., Su, W.C., Huang, S.L., and Lin, K.M. (2007). Factors associated with the diagnosis of neurodevelopmental disorders: a population-based longitudinal study. Pediatrics 119, e435-443.
Chen, H.F., Chen, P., and Li, C.Y. (2010). Risk of malignant neoplasms of liver and biliary tract in diabetic patients with different age and sex stratifications. Hepatology 52, 155-163.
Cheng, T.M. (2003). Taiwan's new national health insurance program: genesis and experience so far. Health Affairs (Millwood) 22, 61-76.
Chiang, T.L. (1997). Taiwan's 1995 health care reform. Health Policy 39, 225-239.
Chien, I.C., Lin, C.H., Chou, Y.J., and Chou, P. (2012). Prevalence, incidence, and stimulant use of attention-deficit hyperactivity disorder in Taiwan, 1996-2005: a national population-based study. Social Psychiatry and Psychiatric Epidemiology 47, 1885-1890.
Chiriboga, C.A., Kuban, K.C., Durkin, M., Hinton, V., Kuhn, L., Sanocka, U., and Bellinger, D. (2003). Factors associated with microcephaly at school age in a very-low-birthweight population. Developmental Medicine and Child Neurology 45, 796-801.
Christie, N.A., Slutsky, A.S., Freeman, B.A., and Tanswell, A.K. (1994). A critical role for thiol, but not ATP, depletion in 95% O2-mediated injury of preterm pneumocytes in vitro. Archives of Biochemistry and Biophysics 313, 131-138.
Coalson, J.J., Winter, V., and deLemos, R.A. (1995). Decreased alveolarization in baboon survivors with bronchopulmonary dysplasia. American Journal of Respiratory and Critical Care Medicine 152, 640-646.
Coalson, J.J., Winter, V.T., Siler-Khodr, T., and Yoder, B.A. (1999). Neonatal chronic lung disease in extremely immature baboons. American Journal of Respiratory and Critical Care Medicine 160, 1333-1346.
Collins, M.P., Lorenz, J.M., Jetton, J.R., and Paneth, N. (2001). Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatric Research 50, 712-719.
Courtney, S.E., Durand, D.J., Asselin, J.M., Hudak, M.L., Aschner, J.L., and Shoemaker, C.T. (2002). High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. New England Journal of Medicine 347, 643-652.
Cowan, F., and Thoresen, M. (1987). The effects of intermittent positive pressure ventilation on cerebral arterial and venous blood velocities in the newborn infant. Acta Paediatrica Scandinavica 76, 239-247.
Dammann, O., and O'Shea, T.M. (2008). Cytokines and Perinatal Brain Damage. Clinics in Perinatology 35, 643-663.
Drougia, A., Giapros, V., Krallis, N., Theocharis, P., Nikaki, A., Tzoufi, M., and Andronikou, S. (2007). Incidence and risk factors for cerebral palsy in infants with perinatal problems: a 15-year review. Early Human Development 83, 541-547.
Durkin, M.S., Maenner, M.J., Newschaffer, C.J., Lee, L.C., Cunniff, C.M., Daniels, J.L., Kirby, R.S., Leavitt, L., Miller, L., Zahorodny, W., et al. (2008). Advanced parental age and the risk of autism spectrum disorder. American Journal of Epidemiology 168, 1268-1276.
Edinger, A.L., and Thompson, C.B. (2004). Death by design: apoptosis, necrosis and autophagy. Current Opinion in Cell Biology 16, 663-669.
Ehrenkranz, R.A., Walsh, M.C., Vohr, B.R., Jobe, A.H., Wright, L.L., Fanaroff, A.A., Wrage, L.A., and Poole, K. (2005). Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 116, 1353-1360.
el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825.
El Mazloum, D., Moschino, L., Bozzetto, S., and Baraldi, E. (2014). Chronic lung disease of prematurity: long-term respiratory outcome. Neonatology 105, 352-356.
Filippone, M., Sartor, M., Zacchello, F., and Baraldi, E. (2003). Flow limitation in infants with bronchopulmonary dysplasia and respiratory function at school age. Lancet 361, 753-754.
Foster, K.A., Oster, C.G., Mayer, M.M., Avery, M.L., and Audus, K.L. (1998). Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Experimental Cell Research 243, 359-366.
Freeman, B.A., and Crapo, J.D. (1981). Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. Journal of Biological Chemistry 256, 10986-10992.
Freeman, B.A., and Crapo, J.D. (1982). Biology of disease: free radicals and tissue injury. Laboratory Investigation 47, 412-426.
Freeman, B.A., Topolosky, M.K., and Crapo, J.D. (1982). Hyperoxia increases oxygen radical production in rat lung homogenates. Archives of Biochemistry and Biophysics 216, 477-484.
Gladstone, I.M., Jr., and Levine, R.L. (1994). Oxidation of proteins in neonatal lungs. Pediatrics 93, 764-768.
Gotsch, F., Romero, R., Kusanovic, J.P., Mazaki-Tovi, S., Pineles, B.L., Erez, O., Espinoza, J., and Hassan, S.S. (2007). The fetal inflammatory response syndrome. Clinical Obstetrics and Gynecology 50, 652-683.
Greenough, A., Cox, S., Alexander, J., Lenney, W., Turnbull, F., Burgess, S., Chetcuti, P.A., Shaw, N.J., Woods, A., Boorman, J., et al. (2001). Health care utilisation of infants with chronic lung disease, related to hospitalisation for RSV infection. Archives of Disease in Childhood 85, 463-468.
Gustafsson, P., and Kallen, K. (2011). Perinatal, maternal, and fetal characteristics of children diagnosed with attention-deficit-hyperactivity disorder: results from a population-based study utilizing the Swedish Medical Birth Register. Developmental Medicine and Child Neurology 53, 263-268.
Hack, M., and Fanaroff, A.A. (2000). Outcomes of children of extremely low birthweight and gestational age in the 1990s. Seminars in Neonatology 5, 89-106.
Hack, M., Taylor, H.G., Schluchter, M., Andreias, L., Drotar, D., and Klein, N. (2009). Behavioral outcomes of extremely low birth weight children at age 8 years. Journal of Developmental and Behavioral Pediatrics 30, 122-130.
Hansen, B.M., Hoff, B., Uldall, P., Greisen, G., Kamper, J., Djernes, B., Hertel, J., Christensen, M.F., Andersen, E., Lillquist, K., et al. (2004). Perinatal risk factors of adverse outcome in very preterm children: a role of initial treatment of respiratory insufficiency? Acta Paediatrica 93, 185-189.
Hecht, D., and Zick, Y. (1992). Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochemical and Biophysical Research Communications 188, 773-779.
Hintz, S.R., Kendrick, D.E., Stoll, B.J., Vohr, B.R., Fanaroff, A.A., Donovan, E.F., Poole, W.K., Blakely, M.L., Wright, L., and Higgins, R. (2005). Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics 115, 696-703.
Huppi, P.S., Warfield, S., Kikinis, R., Barnes, P.D., Zientara, G.P., Jolesz, F.A., Tsuji, M.K., and Volpe, J.J. (1998). Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Annals of Neurology 43, 224-235.
Husain, A.N., Siddiqui, N.H., and Stocker, J.T. (1998). Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Human Pathology 29, 710-717.
Indredavik, M.S., Vik, T., Evensen, K.A., Skranes, J., Taraldsen, G., and Brubakk, A.M. (2010). Perinatal risk and psychiatric outcome in adolescents born preterm with very low birth weight or term small for gestational age. Journal of Developmental and Behavioral Pediatrics 31, 286-294.
Janssen, Y.M., Van Houten, B., Borm, P.J., and Mossman, B.T. (1993). Cell and tissue responses to oxidative damage. Laboratory Investigation 69, 261-274.
Jobe, A.J. (1999). The new BPD: an arrest of lung development. Pediatric Research 46, 641-643.
Johnson, S., Hollis, C., Kochhar, P., Hennessy, E., Wolke, D., and Marlow, N. (2010). Psychiatric disorders in extremely preterm children: longitudinal finding at age 11 years in the EPICure study. Journal of the American Academy of Child and Adolescent Psychiatry 49, 453-463 e451.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal 19, 5720-5728.
Kazzaz, J.A., Xu, J., Palaia, T.A., Mantell, L., Fein, A.M., and Horowitz, S. (1996). Cellular oxygen toxicity - Oxidant injury without apoptosis. Journal of Biological Chemistry 271, 15182-15186.
Kobaly, K., Schluchter, M., Minich, N., Friedman, H., Taylor, H.G., Wilson-Costello, D., and Hack, M. (2008). Outcomes of extremely low birth weight (<1 kg) and extremely low gestational age (<28 weeks) infants with bronchopulmonary dysplasia: effects of practice changes in 2000 to 2003. Pediatrics 121, 73-81.
Korner, A.F., Stevenson, D.K., Kraemer, H.C., Spiker, D., Scott, D.T., Constantinou, J., and Dimiceli, S. (1993). Prediction of the development of low birth weight preterm infants by a new neonatal medical index. Journal of Developmental and Behavioral Pediatrics 14, 106-111.
Kortsalioudaki, C., Taylor, R.M., Cheeseman, P., Bansal, S., Mieli-Vergani, G., and Dhawan, A. (2008). Safety and efficacy of N-acetylcysteine in children with non-acetaminophen-induced acute liver failure. Liver Transplantation 14, 25-30.
Kristiansen, K.A., Jensen, P.E., Moller, I.M., and Schulz, A. (2009). Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy. Physiologia Plantarum 136, 369-383.
Kroemer, G., and Levine, B. (2008). Autophagic cell death: the story of a misnomer. Nature Reviews Molecular Cell Biology 9, 1004-1010.
Langley, S.C., and Kelly, F.J. (1993). N-acetylcysteine ameliorates hyperoxic lung injury in the preterm guinea pig. Biochemical Pharmacology 45, 841-846.
Lau, C., Ambalavanan, N., Chakraborty, H., Wingate, M.S., and Carlo, W.A. (2013). Extremely low birth weight and infant mortality rates in the United States. Pediatrics 131, 855-860.
Lemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe, R.A., Cascio, W.E., Bradham, C.A., Brenner, D.A., et al. (1998). The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochimica et Biophysica Acta 1366, 177-196.
Lemons, J.A., Bauer, C.R., Oh, W., Korones, S.B., Papile, L.A., Stoll, B.J., Verter, J., Temprosa, M., Wright, L.L., Ehrenkranz, R.A., et al. (2001). Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 107, E1.
Levine, B., and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell 6, 463-477.
Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.
Lieber, M., Smith, B., Szakal, A., Nelson-Rees, W., and Todaro, G. (1976). A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. International Journal of Cancer 17, 62-70.
Limperopoulos, C., Gauvreau, K.K., O'Leary, H., Moore, M., Bassan, H., Eichenwald, E.C., Soul, J.S., Ringer, S.A., Di Salvo, D.N., and du Plessis, A.J. (2008). Cerebral hemodynamic changes during intensive care of preterm infants. Pediatrics 122, e1006-1013.
Liton, P.B., Lin, Y., Luna, C., Li, G., Gonzalez, P., and Epstein, D.L. (2008). Cultured porcine trabecular meshwork cells display altered lysosomal function when subjected to chronic oxidative stress. Investigative Ophthalmology and Visual Science 49, 3961-3969.
Loeliger, M., Inder, T., Cain, S., Ramesh, R.C., Camm, E., Thomson, M.A., Coalson, J., and Rees, S.M. (2006). Cerebral outcomes in a preterm baboon model of early versus delayed nasal continuous positive airway pressure. Pediatrics 118, 1640-1653.
Lu, J.F., and Hsiao, W.C. (2003). Does universal health insurance make health care unaffordable? Lessons from Taiwan. Health Affairs (Millwood) 22, 77-88.
Lubec, G., Widness, J.A., Hayde, M., Menzel, D., and Pollak, A. (1997). Hydroxyl radical generation in oxygen-treated infants. Pediatrics 100, 700-704.
Lucas, M.C., Ludena, M.D., Barbero, E.A., and Sanchez-Gascon, F. (1995). Effects of N-acetylcysteine on hyperoxic lung in the rat. Respiratory Medicine 89, 311.
Lui, K., Lloyd, J., Ang, E., Rynn, M., and Gupta, J.M. (2000). Early changes in respiratory compliance and resistance during the development of bronchopulmonary dysplasia in the era of surfactant therapy. Pediatric Pulmonology 30, 282-290.
Luo, X., Christie, N.A., McLaughlin, M.A., Belcastro, R., Sedlackova, L., Cabacungan, J., Freeman, B.A., and Tanswell, A.K. (1999). H2O2 mediates O2 toxicity in cultured fetal rat distal lung epithelial cells. Free Radical Biology and Medicine 26, 1357-1368.
Mantell, L.L., Horowitz, S., Davis, J.M., and Kazzaz, J.A. (1999). Hyperoxia-induced cell death in the lung--the correlation of apoptosis, necrosis, and inflammation. Annals of the New York Academy of Sciences 887, 171-180.
Matute-Bello, G., Frevert, C.W., and Martin, T.R. (2008). Animal models of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 295, L379-399.
Mazure, N.M., and Pouyssegur, J. (2010). Hypoxia-induced autophagy: cell death or cell survival? Current Opinion in Cell Biology 22, 177-180.
McElrath, T.F., Hecht, J.L., Dammann, O., Boggess, K., Onderdonk, A., Markenson, G., Harper, M., Delpapa, E., Allred, E.N., and Leviton, A. (2008). Pregnancy disorders that lead to delivery before the 28th week of gestation: an epidemiologic approach to classification. American Journal of Epidemiology 168, 980-989.
McGrath-Morrow, S.A., and Stahl, J. (2001a). Apoptosis in neonatal murine lung exposed to hyperoxia. American Journal of Respiratory Cell and Molecular Biology 25, 150-155.
McGrath-Morrow, S.A., and Stahl, J. (2001b). Growth arrest in A549 cells during hyperoxic stress is associated with decreased cyclin B1 and increased p21(Waf1/Cip1/Sdi1) levels. Biochimica et Biophysica Acta 1538, 90-97.
Miller, S.P., Ferriero, D.M., Leonard, C., Piecuch, R., Glidden, D.V., Partridge, J.C., Perez, M., Mukherjee, P., Vigneron, D.B., and Barkovich, A.J. (2005). Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. Journal of Pediatrics 147, 609-616.
Mizushima, N., Levine, B., Cuervo, A.M., and Klionsky, D.J. (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075.
Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326.
Nagata, K., Iwasaki, Y., Yamada, T., Yuba, T., Kono, K., Hosogi, S., Ohsugi, S., Kuwahara, H., and Marunaka, Y. (2007). Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury. Respiratory Medicine 101, 800-807.
Naik, A.S., Kallapur, S.G., Bachurski, C.J., Jobe, A.H., Michna, J., Kramer, B.W., and Ikegami, M. (2001). Effects of ventilation with different positive end-expiratory pressures on cytokine expression in the preterm lamb lung. American Journal of Respiratory and Critical Care Medicine 164, 494-498.
Neufeld, M.D., Frigon, C., Graham, A.S., and Mueller, B.A. (2005). Maternal infection and risk of cerebral palsy in term and preterm infants. Journal of Perinatology 25, 108-113.
Niu, J.O., Munshi, U.K., Siddiq, M.M., and Parton, L.A. (1998). Early increase in endothelin-1 in tracheal aspirates of preterm infants: correlation with bronchopulmonary dysplasia. Journal of Pediatrics 132, 965-970.
Northway, W.H., Jr., Rosan, R.C., and Porter, D.Y. (1967). Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. New England Journal of Medicine 276, 357-368.
O'Brodovich, H.M., and Mellins, R.B. (1985). Bronchopulmonary dysplasia. Unresolved neonatal acute lung injury. American Review of Respiratory Disease 132, 694-709.
O'Leary, C., Leonard, H., Bourke, J., D'Antoine, H., Bartu, A., and Bower, C. (2013). Intellectual disability: population-based estimates of the proportion attributable to maternal alcohol use disorder during pregnancy. Developmental Medicine and Child Neurology 55, 271-277.
O'Reilly, M.A., Staversky, R.J., Watkins, R.H., Reed, C.K., de Mesy Jensen, K.L., Finkelstein, J.N., and Keng, P.C. (2001). The cyclin-dependent kinase inhibitor p21 protects the lung from oxidative stress. American Journal of Respiratory Cell and Molecular Biology 24, 703-710.
O'Shea, T.M., Goldstein, D.J., deRegnier, R.A., Sheaffer, C.I., Roberts, D.D., and Dillard, R.G. (1996). Outcome at 4 to 5 years of age in children recovered from neonatal chronic lung disease. Developmental Medicine and Child Neurology 38, 830-839.
Ogihara, T., Okamoto, R., Kim, H.S., Nagai, A., Morinobu, T., Moji, H., Kamegai, H., Hirano, K., Ogihara, H., Tamai, H., et al. (1996). New evidence for the involvement of oxygen radicals in triggering neonatal chronic lung disease. Pediatric Research 39, 117-119.
Otterbein, L.E., Chin, B.Y., Mantell, L.L., Stansberry, L., Horowitz, S., and Choi, A.M. (1998). Pulmonary apoptosis in aged and oxygen-tolerant rats exposed to hyperoxia. American Journal of Physiology 275, L14-20.
Petrache, I., Choi, M.E., Otterbein, L.E., Chin, B.Y., Mantell, L.L., Horowitz, S., and Choi, A.M. (1999). Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells. American Journal of Physiology 277, L589-595.
Pogribna, U., Yu, X., Burson, K., Zhou, Y., Lasky, R.E., Narayana, P.A., and Parikh, N.A. (2013). Perinatal clinical antecedents of white matter microstructural abnormalities on diffusion tensor imaging in extremely preterm infants. PLoS One 8, e72974.
Powell, K., Kerkering, K.W., Barker, G., and Rozycki, H.J. (2006). Dexamethasone dosing, mechanical ventilation and the risk of cerebral palsy. Journal of Maternal-Fetal and Neonatal Medicine 19, 43-48.
Rouschop, K.M., Ramaekers, C.H., Schaaf, M.B., Keulers, T.G., Savelkouls, K.G., Lambin, P., Koritzinsky, M., and Wouters, B.G. (2009). Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiotherapy and Oncology 92, 411-416.
Rubinsztein, D.C. (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780-786.
Rueckert, R.R., and Mueller, G.C. (1960). Effect of oxygen tension on HeLa cell growth. Cancer Research 20, 944-949.
Rush, M.G., and Hazinski, T.A. (1992). Current therapy of bronchopulmonary dysplasia. Clinics in Perinatology 19, 563-590.
Saldir, M., Sarici, S.U., Bakar, E.E., and Ozcan, O. (2010). Neurodevelopmental status of preterm newborns at infancy, born at a tertiary care center in Turkey. American Journal of Perinatology 27, 121-128.
Sanders, S.P., Zweier, J.L., Kuppusamy, P., Harrison, S.J., Bassett, D.J., Gabrielson, E.W., and Sylvester, J.T. (1993). Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport. Journal of Clinical Investigation 91, 46-52.
Scaduto, R.C., Jr., and Grotyohann, L.W. (1999). Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophysical Journal 76, 469-477.
Scherz-Shouval, R., and Elazar, Z. (2007). ROS, mitochondria and the regulation of autophagy. Trends in Cell Biology 17, 422-427.
Schoonen, W.G., Wanamarta, A.H., van der Klei-van Moorsel, J.M., Jakobs, C., and Joenje, H. (1990). Hyperoxia-induced clonogenic killing of HeLa cells associated with respiratory failure and selective inactivation of Krebs cycle enzymes. Mutation Research 237, 173-181.
Shah, A.R., Kurth, C.D., Gwiazdowski, S.G., Chance, B., and Delivoria-Papadopoulos, M. (1992). Fluctuations in cerebral oxygenation and blood volume during endotracheal suctioning in premature infants. Journal of Pediatrics 120, 769-774.
Shintani, T., and Klionsky, D.J. (2004). Autophagy in health and disease: a double-edged sword. Science 306, 990-995.
Singer, L., Yamashita, T., Lilien, L., Collin, M., and Baley, J. (1997). A longitudinal study of developmental outcome of infants with bronchopulmonary dysplasia and very low birth weight. Pediatrics 100, 987-993.
Skidmore, M.D., Rivers, A., and Hack, M. (1990). Increased risk of cerebral palsy among very low-birthweight infants with chronic lung disease. Developmental Medicine and Child Neurology 32, 325-332.
Slutsky, A.S. (1994). Consensus conference on mechanical ventilation--January 28-30, 1993 at Northbrook, Illinois, USA. Part I. European Society of Intensive Care Medicine, the ACCP and the SCCM. Intensive Care Medicine 20, 64-79.
Stroikin, Y., Dalen, H., Loof, S., and Terman, A. (2004). Inhibition of autophagy with 3-methyladenine results in impaired turnover of lysosomes and accumulation of lipofuscin-like material. European Journal of Cell Biology 83, 583-590.
Sun, Y., Chang, Y.H., Chen, H.F., Su, Y.H., Su, H.F., and Li, C.Y. (2012). Risk of Parkinson disease onset in patients with diabetes: a 9-year population-based cohort study with age and sex stratifications. Diabetes Care 35, 1047-1049.
Tanswell AK, L.M. (1996). Bronchopulmonary dysplasia: strategies for therapeutic intervention. In Intensive Care in Childhood: A Challenge to the Future, v.d.V.E. Tibboel D, ed. (Heidelberg, Germany: Springer-Verlag), pp. 53-65.
Tanswell, A.K., Olson, D.M., and Freeman, B.A. (1990). Liposome-mediated augmentation of antioxidant defenses in fetal rat pneumocytes. American Journal of Physiology 258, L165-172.
Thomas, C.W., Meinzen-Derr, J., Hoath, S.B., and Narendran, V. (2012). Neurodevelopmental outcomes of extremely low birth weight infants ventilated with continuous positive airway pressure vs. mechanical ventilation. Indian Journal of Pediatrics 79, 218-223.
Tran, U., Gray, P.H., and O'Callaghan, M.J. (2005). Neonatal antecedents for cerebral palsy in extremely preterm babies and interaction with maternal factors. Early Human Development 81, 555-561.
Trittmann, J.K., Nelin, L.D., and Klebanoff, M.A. (2013). Bronchopulmonary dysplasia and neurodevelopmental outcome in extremely preterm neonates. European Journal of Pediatrics 172, 1173-1180.
Turrens, J.F., Freeman, B.A., and Crapo, J.D. (1982). Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Archives of Biochemistry and Biophysics 217, 411-421.
Ueda, N., and Shah, S.V. (1992). Endonuclease-induced DNA damage and cell death in oxidant injury to renal tubular epithelial cells. Journal of Clinical Investigation 90, 2593-2597.
van Klaveren, R.J., Dinsdale, D., Pype, J.L., Demedts, M., and Nemery, B. (1997). N-acetylcysteine does not protect against type II cell injury after prolonged exposure to hyperoxia in rats. American Journal of Physiology 273, L548-555.
van Kooij, B.J., de Vries, L.S., Ball, G., van Haastert, I.C., Benders, M.J., Groenendaal, F., and Counsell, S.J. (2012). Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR American Journal of Neuroradiology 33, 188-194.
Van Marter, L.J., Allred, E.N., Pagano, M., Sanocka, U., Parad, R., Moore, M., Susser, M., Paneth, N., and Leviton, A. (2000). Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease? The Neonatology Committee for the Developmental Network. Pediatrics 105, 1194-1201.
Varsila, E., Pitkanen, O., Hallman, M., and Andersson, S. (1994). Immaturity-dependent free radical activity in premature infants. Pediatric Research 36, 55-59.
Vohr, B.R., Coll, C.G., Lobato, D., Yunis, K.A., O'Dea, C., and Oh, W. (1991). Neurodevelopmental and medical status of low-birthweight survivors of bronchopulmonary dysplasia at 10 to 12 years of age. Developmental Medicine and Child Neurology 33, 690-697.
Vohr, B.R., Wright, L.L., Dusick, A.M., Mele, L., Verter, J., Steichen, J.J., Simon, N.P., Wilson, D.C., Broyles, S., Bauer, C.R., et al. (2000). Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993-1994. Pediatrics 105, 1216-1226.
Vohr, B.R., Wright, L.L., Poole, W.K., and McDonald, S.A. (2005). Neurodevelopmental outcomes of extremely low birth weight infants <32 weeks' gestation between 1993 and 1998. Pediatrics 116, 635-643.
Vom Hove, M., Prenzel, F., Uhlig, H.H., and Robel-Tillig, E. (2014). Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. Journal of Pediatrics 164, 40-45.e44.
Warner, B.B., Stuart, L.A., Papes, R.A., and Wispe, J.R. (1998). Functional and pathological effects of prolonged hyperoxia in neonatal mice. American Journal of Physiology 275, L110-117.
Warshamana, G.S., Martinez, S., Lasky, J.A., Corti, M., and Brody, A.R. (1998). Dexamethasone activates expression of the PDGF-alpha receptor and induces lung fibroblast proliferation. American Journal of Physiology 274, L499-507.
Wilson-Costello, D., Borawski, E., Friedman, H., Redline, R., Fanaroff, A.A., and Hack, M. (1998). Perinatal correlates of cerebral palsy and other neurologic impairment among very low birth weight children. Pediatrics 102, 315-322.
Woodgate, P.G., and Davies, M.W. (2001). Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database of Systematic Reviews, Cd002061.
Yates, H.L., and Newell, S.J. (2012). Postnatal intravenous steroids and long-term neurological outcome: recommendations from meta-analyses. Archives of Disease in Childhood Fetal and Neonatal Edition 97, F299-303.
Yeh, T.F., Lin, Y.J., Lin, H.C., Huang, C.C., Hsieh, W.S., Lin, C.H., and Tsai, C.H. (2004). Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. New England Journal of Medicine 350, 1304-1313.
Yoon, B.H., Romero, R., Jun, J.K., Park, K.H., Park, J.D., Ghezzi, F., and Kim, B.I. (1997). Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. American Journal of Obstetrics and Gynecology 177, 825-830.
Zafarullah, M., Li, W.Q., Sylvester, J., and Ahmad, M. (2003). Molecular mechanisms of N-acetylcysteine actions. Cellular and Molecular Life Sciences 60, 6-20.
Zaher, T.E., Miller, E.J., Morrow, D.M., Javdan, M., and Mantell, L.L. (2007). Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radical Biology and Medicine 42, 897-908.
Zhang, D.W., Shao, J., Lin, J., Zhang, N., Lu, B.J., Lin, S.C., Dong, M.Q., and Han, J. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336.
Zheng, L., Kagedal, K., Dehvari, N., Benedikz, E., Cowburn, R., Marcusson, J., and Terman, A. (2009). Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis. Free Radical Biology and Medicine 46, 422-429.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw