進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2907201416373200
論文名稱(中文) 基於傅立葉轉換光譜儀頻譜式史托克偏光儀及麥克森干涉儀中相位誤差校正之研究
論文名稱(英文) Spectroscopic Stokes Polarimetry Based on Fourier Transform Spectrometer and Phase Error Calibration in Michelson Interferometer
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 劉彥成
研究生(英文) Yeng-Cheng Liu
學號 N16014302
學位類別 碩士
語文別 英文
論文頁數 83頁
口試委員 口試委員-魏明達
口試委員-曾盛豪
口試委員-許家榮
指導教授-羅裕龍
中文關鍵字 光譜式史托克參數  傅立葉轉換光譜儀  偏光儀  相位畸變  分光鏡 
英文關鍵字 Spectral Stokes parameters  Fourier transform spectrometer  Polarimetry  beam splitter  phase distortion 
學科別分類
中文摘要 本研究提出了利用傅立葉轉換光譜儀量測光譜/單色史托克參數的三種方法。在第一種方法中,所設置的裝置中包括白光光源,偏振片設置0 °,四分之一波片和麥克森干涉儀,在所提中的方法中,參數的提取是利用四分之一波片旋轉四種角度分別以0°,22.5°,45°和-45°所產生的干涉圖分佈強度。第二種方法中應用到二維史托克檢測,透過像素化相位延遲片和偏振元件陣列上的高速CCD攝像機和一個並行讀出電路用多通道模擬到數字由從光子晶體中提取的轉換器。因此無任何轉動元件的全場和動態光譜式史托克儀可以被發展出來。最後在第三種方法中,白色光源被替換為單色光源,拿掉干涉儀,一個簡單的斯托克儀在本研究中引入,所提出方法的有效性,展示了數值模擬和實驗。據作者所知,這很有可能是在提取光譜史托克參數中最簡單的光學結構,更重要的是,後兩種方法避免元件在光學系統內旋轉,因此可提供更直接的方法量取光譜式史托克參數。
此外,本研究也提出麥克森干涉儀中補償因分光鏡而產生的相位畸變,利用Q、H、Q的補償原理進行相位上的補償,補償前可先用基因演算法確認此模型是否為可補償之模型,此方法可大大減少因分光鏡產生相位畸變上的誤差。
英文摘要 Three methods are proposed for measuring the spectroscopic/monochromatic Stokes parameters using a Fourier transform spectrometer. In the first method, the parameters are extracted using an optical setup comprising a white light source, a polarizer set to 0°, a quarter-wave plate and a scanning Michelson interferometer. In the proposed approach, the parameters are extracted from the intensity distributions of the interferograms produced with the quarter-wave plate rotated to 0°, 22.5°, 45° and -45°, respectively. In the second approach, the interferograms of two-dimensional detection also can be simultaneously extracted via a pixilated phase-retarder and polarizer array made from photonic crystal on a high-speed CCD camera and a parallel read out circuit with a multi-channel analog to digital converter. Thus, a full-field and dynamic spectroscopic Stokes polarimetry without any rotating components could be developed. Finally, in the third method, the white light source is replaced by a monochromatic light source, the interferometer is removed, and a simple Stokes polarimetry is introduced in this study. The validity of the proposed methods is demonstrated both numerically and experimentally. To the authors’ knowledge, this could be the simplest optical arrangement in extracting the spectral Stokes parameters. Importantly, the latter two methods avoid the need for rotating components within the optical system and therefore provide an experimentally straightforward means of extracting the spectral Stokes parameters.
In addition, the study is also proposed the compensation of phase distortion of beam splitter in Michelson interferometer. The method using Q, H, Q structure on the principle of compensation is proposed. Before phase errors is compensated you can confirm whether this model can be compensated using genetic algorithms, this method can greatly reduce the phase distortion errors of beam splitter.
論文目次 Abstract i
中文摘要 iii
誌謝 v
Table of Contents vi
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Review of the Stokes Parameters Measurement 2
1.3 Review of the Calibration of Polarization Error 7
1.4 Overview of Chapters 10
Chapter 2 Basic Theory 12
2.1 General Definitions of Fourier Transform 12
2.2 Polarization 15
2.2.1 Stokes Parameter 17
2.2.2 Mueller Matrix 21
2.3 Genetic Algorithm Model 22
2.4 Michelson Interferometer 25
Chapter 3 Numerical Validation of Proposed Method 30
3.1 Modeling 30
3.2 Numerical Validation 36
Chapter 4 Experimental Setup and Results 39
4.1 Experimental Setup 39
4.2 Experimental Results 40
4.3 Alternative Optical Setup 44
4.3.1 Replaced Behind The Scanning Michelson Interferometer 44
4.3.2 Stokes Polarimetry System with Monochromatic Light Source Introduction 46
Chapter 5 Analysis for the Free-Space Beam Splitter Using Polarization Controller in Michelson Interferometer 49
5.1 Basic Theoretical Analysis in QHQ Polarization Controller and Error of Beam splitter 49
5.1.1 QHQ Polarization Controller 49
5.1.2 Polarization error of beamsplitter 51
5.2 Analytical model of a free-space Beam splitter in Michelson interferometer 52
5.2.1 Analytical model of common-path free-space of beam splitter in Michelson interferometer 54
5.3 Analytical model of individually free-space path of Beam splitter in Michelson Interferometer 61
5.3.1 Design of individually free-space Beam splitter in Michelson Interferometer 63
5.3.1.1 Application in P-S OCT 67
5.4 Experimental Setup and Results 68
5.4.1 Experimental Setup 68
5.4.2 Experimental Results 69
5.4.2.1 The first approach in compensation 69
5.4.2.2 The second approach in compensation 71
Chapter 6 Conclusion and Future work 76
6.1 Conclusions 76
6.1.1 Conclusion of Spectroscopic Stokes Polarimetry Based on Fourier Transform Spectrometer 76
6.1.2 Conclusion of Analysis for the Free-Space Beam Splitter Using Polarization Controller in Michelson Interferometer 77
6.2 Future Work 78
Bibliography 79
參考文獻 Baumeister, P., “The transmission and degree of polarization of quarter-wave stacks at non-normal incidence,” Optica Acta, Vol 8, pp.105–119 (1961).

Bell, R.J., Introductory Fourier transform spectroscopy, Academic Press, Inc., (1972).

Chen, P. C., Lo, Y. L., Yu, T. C., Lin, J. F., and Yang, T. T., “Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters,” Optics Express, Vol. 17, Issue 18, pp.15860-15884 (2009).

Cheng, H. C. and Lo, Y. L., “The Synthesis of Multiple Parameters of Arbitrary FBGs Via a Genetic Algorithm and Two Thermally Modulated Intensity Spectra,” Journal of Lightwave Technology, Vol. 23, Issue 6, pp. 2158 (2005).

Ciosek, J., Dobrowolski, J. A., Clarke, G. A., and Laframboise, G., “ Design and Manufacture of All-Dielectric Nonpolarizing Beam Splitters,” Applied Optics, Vol. 38, Issue 7, pp. 1244-1250 (1999).

Costich, V. R., “Reduction of polarization effects in interference coatings,” Appl. Opt, Vol 9, pp. 866–870 (1970).

Craven, J. and Kudenov, M. W., “False signature reduction in channeled spectropolarimetry,” Optical Engineering, Vol. 49, pp. 1-10 (2010).

Fujiwara, Hiroyuki., Spectroscopic Ellipsometry, Wiley Press, Inc., (2007).

Gilo, M., “ Design of a non-polarizing beam splitter inside a glass cube,” J Appl Opt, Vol. 31, pp. 5435–9 (1992).

Hariharan, P., Optical interfeometry, Academic Press, Inc., (1983).

Hauge, P. S. and Dill, F. H., “A rotating-compensator Fourier ellipsometer,” Optics Communications, Vol. 14, Issue 4, pp. 431–437 (1975).

Henderson, A. R., “The Design of Non-Polarizing Beam Splitters,” Science Direct, Thin Solid Films, Vol. 51, Issue 3, pp. 339–347 (1978).

Kudenov, M. W., Hagen, N. A., Dereniak, E. L., and Gerhart, G. R., “Fourier transform channeled spectropolarimetry in the MWIR,” Optics Express, Vol. 15, No. 20, pp. 12792-12805 (2007).

Lee, J., Rovira, P. I., An, I., and Collins R. W., “Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth,” JOSA -A, Vol. 18, Issue 8, pp. 1980-1985 (2001).

Li, Y. W. and Kwok, H. S., “LCD Pretilt Angle Measurement using QHQ Compensation Method,” IEEE Optoelectronics, Proceedings of the Sixth Chinese Symposium, pp. 235–236 (2003).

Liao, C. C. and Lo, Y. L., “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Optics Express, Vol. 21, Issue 14, pp. 16831-16853 (2013).

Lo, Y. L., Pham, T. T. H., and Chen, P. C., “Characterization on five effective parameters of anisotropic optical material using Stokes parameters- Demonstration by a fiber-type polarimeter,” Optics Express, Vol. 18, Issue 9, pp. 9133-9150 (2010).

Love, G. D., Oag, Thomas. J. D., and Kirby, Andrew. K., “Common Path Interferometric Wavefront Sensor for Extreme Adaptive Optics,” Optics Express, Vol. 13, Issue 9, pp. 3491-3499 (2005).

Oka, K., “Singleshot spectroscopic polarimetry using channeled spectrum,” Proceedings of SPIE, Vol. 4919, pp. 167-175 (2002).

Onuma, T. and Otani, Y., “A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz,” Optics Communications, Vol. 315, pp. 69–73 (2014).

Qi, H., Hong, R., Yi, K., and Shao, J., “ Nonpolarizing and polarizing filter design,” Appl Opt, Vol. 44, pp. 2343–8 (2005).

Shi, J. H., Wang, Z. P., and Guan, C. Y., “Theoretical analysis of non-polarizing beam splitters with appropriate amplitude and phase,” Optics & Laser Technology, Vol. 41, Issue 3, pp. 351–355 (2009).

Taniguchi, A. and Oka, K., “Stabilization of a channeled spectropolarimeter by self-calibration,” Optics Letters, Vol. 31, No. 22, pp. 3279-3281 (2006).

Thelen, A., “ Non-polarizing interference films inside a glass cube,” Appl Opt, Vol. 15, pp. 2983–5 (1976).

Xu, X. and Fan, Z. J., “ Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube,” Appl Opt, Vol. 45 pp. 4297–302 (2006).

Yu, X. J. and Kwok, H. S., “Reflective LCD Cell Gap Measurement by QHQ Compensation Method,” SID, Vol. 33, Issue 1, pp. 680–683 (2002).

Zukic, M., Guenther, K. H., “Design Of Nonpolarizing Achromatic Beamsplitters With Dielectric Multilayer Coatings,” Opt. Eng, Vol. 28(2), 282165 (1989).


廖佳麒,新型偏極化光學同調斷層掃描儀直接量測線性雙折射材料所有光學參數方法之研究,國立成功大學機械工程研究所碩士論文,2007.

李昌曄,外差及光譜偏光儀於光學旋光性與圓二色性之量測,國立成功大學機械工程研究所碩士論文,2012.

林桓旭,新型偏振掃描式椭圓偏光儀系統於液晶分子動態量測,國立成功大學機械工程研究所碩士論文,2013.

顏志仲,基因演算於光纖陀螺儀之模擬與優化,國立成功大學機械工程研究所碩士論文,2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw