進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2907201410013100
論文名稱(中文) 史托克-穆勒偏光法應用於含散射效應之葡萄糖濃度量測之研究
論文名稱(英文) Study on Glucose Concentration with Scattering Effect Based Upon Stokes-Mueller Polarimetry
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 林立恒
研究生(英文) Li-Han Lin
學號 N16011320
學位類別 碩士
語文別 英文
論文頁數 73頁
口試委員 指導教授-羅裕龍
口試委員-魏明達
口試委員-許家榮
口試委員-曾盛豪
中文關鍵字 史托克-穆勒偏光儀  非等向性材料  葡萄糖濃度  蒙地卡羅模擬法 
英文關鍵字 Stokes-Mueller polarimetry  anisotropic parameters  glucose concentration  Monte Carlo simulation 
學科別分類
中文摘要  本研究提出了一種測量含散射效應之葡萄糖濃度之方式。由於糖尿病患者需要定時測量其體內血糖濃度以便監測病情發展,一套非侵入式、可攜帶的血糖監測系統能使患者有個安全、便利的病情監控機制。光旋性物質溶於水時會改變溶液的折射率,進而使其光學性質發生改變。因此,在溶液內之光旋性物質濃度與光散射係數之間可能有存在著一種物理相關性。在本研究中,我們將藉由史托克-穆勒偏光儀之量測機制,解出包含圓性雙折射 (CB)及去偏極化 (Dep)之穆勒矩陣。藉由比較由實驗中四道不同偏振狀態的入射光打入樣本而得的出射光以及本研究建構之反射穆勒矩陣模型之模擬,使用基因演算法求出兩者間差距最小之誤差,藉此量射出此混雜介質中的葡萄糖濃度及去偏極化。另外,使用蒙地卡羅模擬演算光於系統中打入待測物的偏振光學現象,對於複雜且具高散射特性的生物組織,能夠分析其光在待測物中之傳播行為,並獲得更多待測物之資訊,並結合現有根據偏光儀來分析謬勒矩陣與史托克參數之量測技術,可有效量測待測物之光學參數。此法是一個由巨觀的角度出發,利用機率與統計的方法,提供一個隨機模型的概念,使用大量亂數與機率分佈函數來研究光在生物組織中的傳播行為的方法。由於其嚴謹的考量光子移動的行為,且大量的隨機亂數使其具有統計意義,在生物醫學中被廣泛應用。
英文摘要  A new scheme to measure the glucose concentration with scatters by polarimetry is proposed. Diabetics would benefit greatly from a device capable of providing continuous noninvasive monitoring of their blood glucose levels. The presence of optical activity object dissolved in an aqueous solution modifies the refractive index of the solution and therefore has an influence on the optical properties. Hence a physical correlation may exist between the optical scattering coefficient and concentration of optical activity substance. In this study, the measuring technique based on the Stokes-Mueller polarimetry to solve the Mueller matrices of a complex sample containing CB and depolarization is developed. Output Stokes vectors of four incident polarization states obtained from experiment can be compare to the corresponding value of the simulated Stokes vector, the difference is set as error function. Appling genetic algorithm, the minimum error can be found, the circular birefringence and depolarization which relate to the concentrations of glucose and scattering events in turbid media can be extracted, too. In addition, the Monte Carlo simulation can be used to numerically solve the problem of light propagation in turbid media. This method relies on repeated random sampling to obtain numerical results. The optical properties of interest are obtained from the statistical average of the photon properties. It is widely used in biomedical research to analyze propagation of light through the tissue.
論文目次 Abstract i
中文摘要 iii
誌謝 v
Table of Contents vi
List of Figures ix
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Review of the Glucose Monitoring 3
1.3 Review of the General Ellipsometry 7
1.4 Review of Mueller Matrix Method in Ellipsometer 10
1.5 Review of Glucose Sensing Using Optical Polarimetry and Stokes Mueller Polarimetry 13
1.6 Review of the Monte Carlo Method 14
1.7 Overview of Chapters 15
Chapter 2 Theoretical Analysis of Mueller Matrices 16
2.1 Principle of ellipsometry measurement 16
2.2 Stokes-Mueller Representation 19
2.3 Circular Birefringence and Depolarization 22
2.3.1 Circular Birefringence Materials 22
2.3.2 Depolarization Mueller Matrix of Scattering Media 25
2.4 Mueller Matrix Model of the Circular Birefringence Sample 27
2.4.1 Light propagation in pure glucose solution 28
2.4.2 Mueller Matrices Representation of Interfaces 29
2.5 Decomposition of Circular Birefringence and Depolarization 30
Chapter 3 Simulation Results of Glucose Extraction by the Stokes-Mueller Polarimeter 33
3.1 Genetic Algorithm Model 33
3.2 Glucose Extraction by Genetic Algorithm (GA) 37
3.3 Simulation Result of Glucose Extraction from Tissue Simulating Phantom 40
Chapter 4 Experiment Setup and Results discussion 42
4.1 Experiment of glucose extraction by Stokes-Mueller Polarimetry 42
4.1.1 Experiment Setup of Stokes-Mueller Polarimeter 42
4.1.2 tissue simulating sample & optical rotation angle 44
4.2 Experiment Result of Glucose Extraction from Pure Glucose Solution 46
4.3 Experiment Result of Glucose Extraction from Tissue Simulating Phantom 49
Chapter 5 Polarization State of Light Simulated by Monte Carlo Method 54
5.1 Simulation of Propagation of Light in Turbid Media by Monte Carlo Multi Layer 54
5.2 Monte Carlo Method Including Polarization State of Light 61
5.3 Simulation Result of the Polarized Monte Carlo Program 64
Chapter 6 Conclusions and Future Work 66
6.1 Conclusions 66
6.2 Future Work 67
Bibliography 68
參考文獻 Azzam, R.M.A. “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett., Vol. 2, pp. 148-150, (1978).

Azzam, R.M.A., Giardina, K.A., and Lopez, A.G., “Conventional and generalized ellipsometry using the four-detector photopolarimeter,” Opt. Eng., Vol. 30, pp. 1583-1589, (1991).

Azzam, Rasheed M.A., “Mueller-matrix ellipsometry: a review,” Optical Science, Engineering and Instrumentation'97. International Society for Optics and Photonics, (1997).

Bartel, S. and Hielscher, A. H., “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media, ” Applied Optics, Vol. 39, Issue 10, pp. 1580-1588, (2000).

Beardsley, G. F., “Mueller scattering matrix of sea water,” JOSA, Vol. 58, pp. 52-57, (1968).

Browne, C. A. and Zerban, F., Physical and chemical methods of sugar analysis, John Wiley and Sons, Incorporated, (1948).

Bruulsema, J. T., Hayward, J. E., Farrell, T. J., Patterson, M. S., Heinemann, L., Berger, M., Essenpreis, and Böcker, D., “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient, ” Optics letters, Vol. 22, Issue 3, pp. 190-192, (1997).

Cameron, B. D., Baba, J. S., and Cote, G. L., “Optical polarimetry applied to the development of a noninvasive in-vivo glucose monitor,” In BiOS 2000 The International Symposium on Biomedical Optics, pp. 66-77. International Society for Optics and Photonics, (2000).

Compain, E., Drevillon, B., Huc, J., Parey, J. Y., and Bouree, J. E., “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films, Vol. 47, pp. 313–314, (1998).

Cote, G. L., Fox, M. D., and Northrop, R. B., “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” Biomedical Engineering, IEEE Transactions on, Vol. 39, Issue 7, pp. 752-756, (1992).

Ellis, David I. and Royston Goodacre. “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst, Vol. 131, Issue 8, pp. 875-885, (2006).

Ferrante do Amaral, C. E., and Wolf, B., “Current development in non-invasive glucose monitoring, ” Medical Engineering and Physics, Vol. 30, Issue 5, pp. 541-549, (2008).

Fuchs, K. and Kaatze, U., “Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration,” The Journal of Physical Chemistry B, Vol. 105, Issue 10, pp. 2036-2042, (2001).

Hauge, P. S., Muller, R.H., and Smith, C.G., “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci., Vol. 96, pp. 81–107, (1980).

Hecht, E., Optics, Fourth ed. USA: Addison Wesley, (2002).

Jaillon, F. and Saint-Jalmes, H., “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media, ” Applied optics, Vol. 42, Issue 16, pp. 3290-3296, (2003).

Jang, S. and Fox, M. D., “Optical glucose sensor using a single Faraday rotator,” In Bioengineering Conference, Proceedings of the IEEE 1997 23rd Northeast, pp. 11-12, (1997).

Kohl, M., Essenpreis, M., and Cope, M., “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Physics in medicine and biology, Vol. 40, Issue 7, pp. 1267, (1995).

Laskarakis, A., Logothetidis, S., Pavlopoulou, E., and Gioti, M., “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films, Vol. 455-456, pp. 43-49, (2003).

Liao, C. C. and Lo, Y. L., “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential-and decomposition-based Mueller matrices,” Optics express, Vol. 21, Issue 14, pp. 16831-16853, (2013).

Liu, Y., Ying, Y., Yu, H., and Fu, X., “Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits,” Journal of agricultural and food chemistry, Vol. 54, Issue 8, pp. 2810-2815, (2006).

Lu, Shih-Yau and Russell A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” JOSA-A, Vol. 13, Issue 5, pp. 1106-1113, (1996).

Maier, J. S., Walker, S. A., Fantini, S., Franceschini, M. A., and Gratton, E., “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared, ” Optics letters, Vol. 19, Issue 24, pp. 2062-2064, (1994).

Moscoso, M., Keller, J. B., and Papanicolaou, G., “Depolarization and blurring of optical images by biological tissue, ” JOSA-A, Vol. 18, Issue 4, pp. 948-960, (2001).

Nee, S. M. F., “Depolarization and principal Mueller matrix measured by null ellipsometry, ” Applied optics, Vol. 40, Issue 28, pp. 4933-4939, (2001).

Park, H. D., Lee, K. J., Yoon, H. R., and Nam, H. H., “Design of a portable urine glucose monitoring system for health care,” Computers in biology and medicine, Vol. 35, Issue 4, pp. 275-286, (2005).

Ramella-Roman, J., Prahl, S., and Jacques, S., “Three Monte Carlo programs of polarized light transport into scattering media: part I, ” Optics Express, Vol. 13, Issue 12, pp. 4420-4438, (2005).

Raković, M. J., Kattawar, G. W., Mehruűbeoğlu, M., Cameron, B. D., Wang, L. V., Rastegar, S., and Coté, G. L., “Light backscattering polarization patterns from turbid media: theory and experiment,” Applied optics, Vol. 38, Issue 15, pp. 3399-3408, (1999).

Tierney, M. J., Jayalakshmi, Y., Parris, N. A., Reidy, M. P., Uhegbu, C., and Vijayakumar, P. “Design of a biosensor for continual, transdermal glucose monitoring,” Clinical chemistry, Vol. 45, Issue 9, pp. 1681-1683, (1999).

Tuchin, V. V., Selected papers on tissue optics: applications in medical diagnostics and therapy, Vol. MS102. Bellingham, WA: SPIE Optical Engineering Press, (1994).

Tuchin, V. V., Handbook of Optical Biomedical Diagnostics, Vol. PM107. Bellingham, WA: SPIE Optical Engineering Press, (2002).

Wang, L., Jacques, S. L., and Zheng, L., “MCML—Monte Carlo modeling of light transport in multi-layered tissues, ” Computer methods and programs in biomedicine, Vol. 47, Issue 2, pp. 131-146, (1995).

Yeh, S. J., Hanna, C. F., and Khalil, O. S., “Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements, ” Clinical Chemistry, Vol. 49, Issue 6, pp. 924-934, (2003).

Zhou, G. X., Schmitt, J. M., and Ellicott, C. E., “Sensitive detection of optical rotation in liquids by reflection polarimetry,” Review of scientific instruments, Vol. 64, Issue 10, pp. 2801-2807, (1993).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw