進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2907201311440900
論文名稱(中文) 矽酸鹽加速風化封存二氧化碳
論文名稱(英文) Sequestration of carbon dioxide by accelerated weathering of silicates
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 101
學期 2
出版年 102
研究生(中文) 林紹軒
研究生(英文) Shao-Xuan Lin
學號 L46001125
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-羅尚德
口試委員-楊明偉
口試委員-謝佩珊
口試委員-陳寶祺
中文關鍵字 二氧化碳封存  矽酸鹽  碳酸鹽  風化 
英文關鍵字 CO2 sequestration  carbonate  silicates  weathering. 
學科別分類
中文摘要 矽酸鹽岩石風化是自然條件下岩石與水、二氧化碳之反應:
R_w^+ R_x^(2+) Al_y Si_z O_(w/2+x+3y/2+2z)+2CO_2+2H_2 O↔nR^++mR^(2+)+CO_3^(2-)+HCO_3^-+R_(w-n)^+ R_(x-m)^(2+) Al_y Si_z O_(w/2+x+3y/2+2z-3) 〖(OH)〗_3
通過此風化反應,CO2將以H2CO3、CO32−或HCO3−方式溶解於水中。本研究依此原理將探討一種加速風化反應方法來封存工業二氧化碳。本研究使用台東縣成功鎮都威山之岩樣,乃以綠泥石、石英為主並含少量方解石、長石的泥岩,以及嘉武溪岩樣,乃以輝石、長石為主的輝長岩,以15%CO2混合85%N2的混合氣體為反應氣體進行實驗,測得反應期間的岩石相無機碳濃度(particulate inorganic carbon, PIC)、水溶液相無機碳濃度(dissolved inorganic carbon, DIC)、pH值以及總鹼度(total alkalinity, Alk)隨反應時間之變化。
泥岩岩樣實驗結果表明溶液相中DIC、Alk均隨著反應時間呈指數增加並於九小時後趨於一恆定值;岩石相PIC濃度則隨反應時間呈指數減少並於九小時後趨於一恆定值,正好與溶液相之結果呈相反的關係。此結果說明泥岩之風化可在幾小時內達到飽和狀態,並且結果也說明溶液中二氧化碳之吸收可以很大部分地歸結於泥岩中碳酸鹽之風化。依據實驗結果,估計實驗溶液相之二氧化碳主要來源於泥岩中碳酸鹽風化。顯然,岩石中碳酸鹽之存在可能有效地抑制了其矽酸鹽風化。輝長岩岩樣的各項實驗結果顯示,各項數值皆於四個小時甚至一個小時內達到穩態,且增加幅度極微小,再加上超音波震盪後數值的攀升都說明輝長岩之風化反應,乃是受動力學因素控制之影響。依據實驗結果,由於初始輝長岩中並無碳成分,是故溶液相中DIC及岩石相PIC的濃度增加是岩石與二氧化碳反應後,吸收二氧化碳的量。
本研究觀測到溶液相無機碳濃度(DIC)之測量值遠小於理論計算值,而實測pH值則遠大於其理論計算值。這可能說明在採樣後由於CO2分壓下降,溶液中所吸收的一部分二氧化碳又重新回到大氣中。
液相DIC合併固相PIC的結果反映岩石風化實際參與反應的碳濃度,泥岩結果表明反應為本身碳酸鹽之溶解造成,實際與提供之二氧化碳反應的量甚微。輝長岩樣品則由於本身未含有碳酸鹽成分,因此反應後之碳皆為吸收二氧化碳後的成果。結果表明,碳酸鹽雖然風化的速率較快、反應的幅度較大,然而究因乃本身的礦物溶解,能吸收的二氧化碳濃度不高,因此應以矽酸鹽礦物為日後考量對象,然而矽酸鹽的風化由於受動力學控制,須不斷去除表面的衍生物,以達更加的吸收效率,為往後研究可鑽研的重點之一。
英文摘要 Under natural condition, the weathering of silicates is a reaction of water, rocks and carbon dioxide.
R_w^+ R_x^(2+) Al_y Si_z O_(w/2+x+3y/2+2z)+2CO_2+2H_2 O↔nR^++mR^(2+)+CO_3^(2-)+HCO_3^-+R_(w-n)^+ R_(x-m)^(2+) Al_y Si_z O_(w/2+x+3y/2+2z-3) 〖(OH)〗_3
Through the reaction, carbon dioxide present in water by dissolved carbon dioxide, bicarbonate and carbonate. According to the reaction, this study investigates the sequestration of carbon dioxide by accelerated weathering of silicates. The mudstone sample was collected from Duvel Hill, Chenggong Township, Taitung County. The mudstone is composed by most of chlorite, quartz and a small amount of calcite, feldspar. Another sample is gabbro from Jia Wu River, Taitung County. This gabbro is composed by pyroxene and feldspar. The experiment is equipped with mixed gas 15%CO_2 and 85%N_2 to measure the change in the value of the particulate inorganic carbon (PIC), the dissolved inorganic carbon (DIC), the pH and the total alkalinity (Alk) during the period.
The results of mudstone show that the DIC, pH and Alk are along with the reaction time increases exponentially and reach a constant value after about nine hours. The PIC with the reaction time decreases exponentially and tends to a constant value after about nine hours, and inversely related coincided with the results of the solution phase. This result explains the weathering of the mudstone within a few hours to reach saturation, and the results also show that the absorption of carbon dioxide in solution can be partially attributed to the weathering of carbonate mudstone. Based on these results, we estimate that the experimental solution phase of carbon dioxide from carbonate weathered mudstone. Obviously, the presence of carbonates in the rock may effectively inhibit the silicate weathering. The results of the gabbro sample show that the values are in the four hours or even an hour to reach steady-state, and the rate of increase tiny, and the results are rising after ultrasonic vibration. It means that the gabbro weathering reactions is controlled by kinetic factors.
The study also found that the measured value of the solution phase concentration of inorganic carbon (DIC) is much smaller than its theoretical value, and the measured pH value is much larger than its theoretical value. This may be due to the decreasing of carbon dioxide partial pressure. Therefore, a part of the carbon dioxide absorbed in the solution is released back to the atmosphere after sampling.
The results of DIC combined PIC show the carbon concentration during the weathering reaction. The results show that the rate of weathering of mudstone rapid response, however that is due to carbonate dissolution. Mudstone absorbs the carbon dioxide concentration is not high, therefore should be considered for future work on silicate minerals object. The weathering of silicate minerals is controlled by dynamic, to continue to remove surface derivative to achieve greater efficiency of absorption is one of the key point in subsequent studies.
論文目次 目錄
摘要...................................I
Abstract..............................III
誌謝...................................V
章節目錄................................VI
表目錄..................................IX
圖目錄..................................X
附錄目錄................................XIII
章節目錄
第一章 前言...........................1
第一節 研究動機........................1
1-1-1 碳捕獲(Carbon Capture)..........2
1-1-2 碳封存(Carbon Storage)..........3
第二節 研究目的........................4
第二章 前人研究........................6
第一節 礦物溶解反應.....................6
第二節 岩石風化速率.....................8
第三節 石灰岩風化反應....................9
第四節 鹼度............................11
第三章 採樣及分析方法....................14
第一節 岩樣處理.........................14
第二節 實驗設置.........................17
第三節 使用儀器簡介......................20
3-3-1總碳分析儀(Total Carbon Analyzer) ...20
3-3-2自動滴定儀...........................22
第四章 結果與討論........................23
第一節 不同粒徑實驗結果比較................23
4-1-1 泥岩岩樣............................23
4-1-2 輝長岩岩樣..........................26
第二節 不同分壓實驗結果比較................29
4-2-1 泥岩岩樣............................29
4-2-2 輝長岩岩樣..........................31
第三節 超音波震盪對岩石風化的影響...........33
4-3-1 泥岩岩樣............................33
4-3-2 輝長岩岩樣...........................35
第四節 熱力學模擬.........................38
4-4-1 以鹼度模擬溶液內溶解無機碳值及酸鹼度......38
泥岩岩樣pH值結果............................41
泥岩岩樣DIC值結果...........................42
輝長岩岩樣pH值結果...........................43
輝長岩岩樣DIC值結果..........................44
4-4-2 以熱力學模擬溶液平衡狀態.................46
氣相平衡....................................46
固相平衡....................................47
鹼度隨pH值的變化.............................49
鹼度隨DIC值的變化............................53
第五節 總吸收碳濃度.........................59
4-5-1 泥岩結果..............................59
4-5-2 輝長岩結果.............................60
第五章 結論................................64
參考文獻.....................................66
附錄.........................................74
參考文獻 參考文獻
吳榮章、范振暉、宣大衡、余輝龍、吳健一、陳大麟、洪克銘(2007),「台灣進行二氧化碳捕獲地下封存之初步構想」。
徐恆文(2007),「二氧化碳的捕獲與分離」,科學發展,413期,頁24-27。
An, H., Feng, B., Su, S., (2011), “CO2 capture by electrothermal swing adsorption with activated carbon fibre materials.” International Journal of Greenhouse Gas Control 5: 16-25.
Berner R. A., Lasaga A. C., and Garrels R. M. (1983), “The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years.” American Journal of Science 283: 641-683.
Bickle M. J., Chapman H. J., Bunbury J., Harris N. B. W., Fairchild I. J., Ahmad T. and Pomies C. (2005), “Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges.” Geochimica et Cosmochimica Acta 69: 2221-2240.
Blum A. E. and Lasaga A.C. (1991), “The role of surface speciation in the dissolution of albite.” Geochimica et Cosmochimica Acta 55: 2193-2201.
Brunetti, A., Scura, F., Barbieri, G., Drioli, E., (2010), “Membrane technologies for CO2 separation.” Journal of Membrane Science 359, 115-125.
Caldeira K., and Rau G. H. (2000), “Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications.” Geophysical research letters, 27: 225-228.
Clark I.D. and Fritz P. (1997), “Environmental Isotopes in Hydrogeology.” Lewis Publishers, New York.
Cormos, C.C., Starr, F., Tzimas, E., Peteves, S., (2008), “Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture.” International Journal of Hydrogen Energy 33: 1286-1294.
Dalai T.K., Krishnaswami S., and Sarin M.M. (2002), “Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO2 consumption in the Himalaya.” Geochimica et Cosmochimica Acta 66: 3397–3416.
Das A., Krishnaswami S., Sarin M.M., and Pande K. (2005), “Chemical weathering in the Krishna Basin and western Ghats of the Deccan Traps, India: rates of basalt weathering and their controls.” Geochimica et Cosmochimica Acta 69: 2067-2084.
Daval D., Hellmann R., Corvisier J., Tisserand D., Martinez I. and Guyot F. (2010), “Dissolution kinetics of diopside as a function of solution saturation state: macroscopic measurements and implications for modeling of geological storage of CO2.” Geochimica et Cosmochimica Acta 74: 2615-2633.
Dixon J. L. Friedhelm von Blanckenburg (2012), “Soils as pacemakers and limiters of global silicate weathering.” Comptes Rendus Geoscience 344: 597-609.
Fosbol P. L., Thomsen K., and Stenby E. H. (2010), “Review and recommended thermodynamic properties of FeCO3.” Corrosion Engineering, Science and Technology 45: 115-135.
Gaillardet J., Dupre B., Louvat P., and Allegre C. J. (1999), “Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers.” Chemical Geology 159: 3-30.
Gudbrandsson S., Wolff-Boenisch D., Gislason S. R., and Oelkers E. H. (2011), “An experimental study of crystalline basalt dissolution from 2 ≦ pH ≦ 11 and temperatures from 5 to 75oC.” Geochimica et Cosmochimica Acta 75: 5496-5509.
Hartmann J. (2009), “Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago - application of a multi-lithological model framework.” Chemical Geology 265: 237-271.
Hartmann J., and Moosdorf N. (2011), “Chemical weathering rates of silicate-dominated lithological classes and associated liberation rates of phosphorus on the Japanese Archipelago—Implications for global scale analysis.” Chemical Geology 287: 125-157.
Huffman, Edward W.D. (2005), American Public Health Association, American Water Works Association & Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater,21st ed., Method 5310C, pp.5 - 23  5 - 25. APHA, Washington, D.C., USA.
Hwang, S. Y., Su, V., Farh, L., and Shiuan, D. (1999), “Bioassay of biotin concentration with a Escherichia coli bio deletion mutant.” Journal of Biochemical and Biophysical Methods 39: 111-114.
Ketzer J.M., Iglesias R., Einloft S., Dullius J., Ligabue R., and V. de Lima. (2009), “Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil.” Applied Geochemistry 24: 760-767.
Knauss K. G., Nguyen S. N. and Weed H. C. (1993), “Diopside dissolution kinetics as a function of pH, CO2, temperature, and time.” Geochimica et Cosmochimica Acta 57: 285-294.
Kobos, P.H., Cappelle, M.A., Krumhansl, J.L., Dewers, T.A., McNemar, A., Borns, D., (2011), “Combining power plant water needs and carbon dioxide storage using saline formations: Implications for carbon dioxide and water management policies.” International Journal of Greenhouse Gas Control 5: 899-910.
Lerman A., and Wu L. (2006), “CO2 and sulfuric acid controls of weathering and river water composition.” Journal of Geochemical Exploration 88:427-430.
Lerman A., Wu L., and Mackenzie F. T. (2007), “CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance.” Marine Chemistry 106: 326-350.
Li S. L., Liu C. Q., Li J., Lang Y. C., Ding H., and Li L. (2010), “Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints.” Chemical Geology 277: 301-309.
Li, Y., Zhao, C., Chen, H., Ren, Q., Duan, L., (2011), “CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based looping cycle.” Energy 36: 1590-1598.
Magi, M., and Murai, S., (2011), “Outcome of the ocean sequestration project, and technical evaluation of CCS as mitigation measure of increase atmospheric CO2 and ocean acidification.” Energy Procedia 4, 4005-4011.
Metz, B., Davidson, O., Coninck, H.d., Loos, M., Meyer, L., (2005), “Special Report on Carbon dioxide capture and storage.” Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press.
Moosdorf N., Hartmann J., Lauerwald R., Hagedorn B., and Kempe S. (2011), “Atmospheric CO2 consumption by chemical weathering in North America.” Geochimica et Cosmochimica Acta 75: 7829-7854.
Moquet J. S., Crave A., Viers J., Seyler P., Armijos E., Bourrel L., Chavarri E., Lagane C., Laraque A., Waldo Sven Lavado Casimiro, Pombosa R., Noriega L., Vera A., and Guyot J. L. (2011), “Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins.” Chemical Geology 287: 1-26.
Oelkers E. H. (2001a), “An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations.” Chemical Geology 175: 485-494.
Oelkers E. H. (2001b), “General kinetic description of multioxide silicate mineral and glass dissolution.” Geochimica et Cosmochimica Acta 65: 3703-3719.
Oelkers E. H., and Gislason S. R. (2001), “The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11.” Geochimica et Cosmochimica Acta 65: 3671-3681.
Oelkers E. H., and Gislason S. R. (2003), “Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature.” Geochimica et Cosmochimica Acta 67: 3817-3832.
Oelkers E. H., and Schott J. (1995), “Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis.” Geochimica et Cosmochimica Acta 59: 5039-5053.
Oelkers E. H., and Schott J. (2001), “An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution.” Geochimica et Cosmochimica Acta 65: 1219-1231.
Oguchi C. T. (2001), “Formation of weathering rinds on andesite.” Earth Surface Processes and Landforms 26: 847–858.
Oxburgh R., Drever J. I. and Sun Y. T. (1994), “Mechanism of plagioclase dissolution in acid-solution at 25oC.” Geochimica et Cosmochimica Acta 58: 661-669.
Park A. H. A., and Fan L. S. (2004), “CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process.” Chemical Engineering Science 59: 5241-5247.
Park A. H. A., Jadhav R., and Fan L. S. (2003), “CO2 Mineral sequestration: chemically enhanced aqueous carbonation of serpentine.” Canadian Journal of Chemical Engineering 81: 885–890.
Pokrovsky O. S. and Schott J. (2000a), “Forsterite surface composition in aqueous solution: a combined potentiometric, electrokinetic, and spectroscopic approach.” Geochimica et Cosmochimica Acta 64: 3299-3312.
Pokrovsky O. S. and Schott J. (2000b), “Kinetics and mechanism of forsterite dissolution at 25oC and pH from 1 to 12.” Geochimica et Cosmochimica Acta 64: 3313-3325.
Pokrovsky O. S., Schott J., and Dupré B. (2006), “Basalt weathering and trace elements migration in the boreal Arctic zone.” Journal of Geochemical Exploration 88: 304-307.
Quade J., English N. and DeCelles P. G. (2003), “Silicate versus carbonate weathering in the Himalaya: a comparison of the Arun and Seti River watersheds.” Chemical Geology 202: 275–296.
Quanzhou Ga, Zhen Tao, Xiakun Huang, Ling Nan, Kefu Yu, and Zhengang Wang (2009), “Chemical weathering and CO2 consumption in the Xijiang River basin, South China.” Geomorphology 106: 324-332.
Rau G. H., and Caldeira K. (1999), “Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate.” Energy Conversion & Management 40: 1803-1813.
Rau G. H., Knauss K. G., Langer W. H., and Caldeira K. (2007), “Reducing energy-related CO2 emissions using accelerated weathering of limestone.” Energy 32: 1471-1477.
Raymond P.A. and Cole J. J. (2003), “Increase in the export of alkalinity from North America’s largest river.” Science 301: 88-91.
Rothman D. H. (2002), “Atmospheric carbon dioxide levels for the last 500 million years.” Proceedings of the National Academy of Sciences of the United States of America 99: 4167-4171.
Solunke, R.D., Veser, G., (2011), “Integrating desulfurization with CO2-capture in chemical-looping combustion.” Fuel 90: 608-617.
The National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) Carbon Cycle Greenhouse Gases group. 2012.
Tipper E. T., Bickle M. J., Galy A., West A. J., Pomies C., and Chapman H. J. (2006), “The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry.” Geochimica et Cosmochimica Acta 70: 2737–2754.
Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C., (2010), “Post-combution CO2 capture with chemical absorption: A state-of-the-art review.” Chemical Engineering Research and Design 89: 1609-1624.
Wang S., Yeager K. M., Wan G., Liu C., Lü Y., and Wang Y. (2012), “Carbon export and HCO_3^- fate in carbonate catchments: A case study in the karst plateau of southwestern China.” Applied Geochemistry 27: 64-72.
White A. F., Bullen T. D., Vivit D. V., Schulz M. S. and Clow D. W. (1999), “The role of disseminated calcite in the chemical weathering of granitoid rocks.” Geochimica et Cosmochimica Acta 63: 1939–1953.
Woo-Jin Shin, Jong-Sik Ryu, Park Y., and Kwang-Sik Lee (2011), “Chemical weathering and associated CO2 consumption in six major river basins, South Korea.” Geomorphology 129: 334-341.
Wu L., Huh Y., Qin J., Du G., and van Der Lee S. (2005), “Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai–Tibet Plateau.” Geochimica et Cosmochimica Acta 69: 5279–5294.
Yamamoto, H., and Doughty, C., (2011), “Investigation of gridding effects for numerical simulations of CO2 geologic sequestration.” International Journal of Greenhouse Gas 5: 975-985.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw