進階搜尋


 
系統識別號 U0026-2907201219542600
論文名稱(中文) 利用聚麩胺酸和聚甲基丙烯酸N,N-二乙氨基乙酯形成的聚電解質間複合粒子及其金奈米粒子成核反應和二氧化矽礦化作用
論文名稱(英文) Preparation of interpolyelectrolyte complex particles by PDEAEMA and PGA and nucleation of gold nanoparticles and silica mineralization in complex particles
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 許承昌
研究生(英文) Cheng-Chang Shiu
學號 N36994344
學位類別 碩士
語文別 中文
論文頁數 109頁
口試委員 指導教授-詹正雄
口試委員-張鑑祥
口試委員-吳文中
口試委員-王勝仕
中文關鍵字 聚電解質複合物  二氧化矽礦化作用  金奈米粒子  複合材料  等電點 
英文關鍵字 polyelectrolyte complexs  silica mineralization  gold nanoparticle  composite materials  isoelectric point 
學科別分類
中文摘要 在本研究中,聚麩胺酸和聚甲基丙烯酸N,N-二乙氨基乙酯在水溶液中形成的聚電解質複合粒子,再加上我們藉由聚電解質複合粒子的當作模板進行礦化反應和成核反應,形成分散性良好的聚電解質複合粒子-二氧化矽材料和聚電解質複合粒子-二氧化矽-金奈米粒子複合材料。我們可以藉由自由基聚合反應和NCAs開環聚合反應控制聚麩胺酸和聚甲基丙烯酸N,N-二乙氨基乙酯(PDEAEMA) 和聚麩胺酸(PGA)的鏈長。另外因為PGA帶負電荷而PDEAEMA帶正電荷,藉由庫倫作用力吸引形成奈米複合粒子,我們藉由DLS、Zeta potential、TEM、CD的檢測,去了解奈米複合粒子的基本特性。藉由這些檢測我們發現高分子的鏈長和PGA和PDEAEMA之間的重量百分比和鹽類濃度會影響奈米複合粒子的粒徑、介面電位、構形、二級結構。另外配製成的複合粒子粒徑分布很窄,粒徑均一。而且我們藉由調控鹽類濃度、和高分子鏈長製備成具有micelle或vesicle的結構複合粒子。另外我們測量不同組成複合粒子的 zeta-potential ,去了解複合粒子表面電荷的帶電情況。
我們藉由仿生合成方式進行製備聚電解質複合粒子-二氧化矽無機有機複合材料,藉由FTIR、TGA、DLS、TEM,去分析此複合材料的特性。我們將複合效率最好的複合粒子當作模板進行礦化作用。我們藉由FTIR確認礦化反應的確是成功,另外用TGA分析聚電解質複合粒子-二氧化矽無機有機複合材料的有機和無機的重量百分比,另外我們發現無機的重量百分比,和PDEAEMA的鏈長、重量百分比有關聯。另外此聚電解質複合粒子-二氧化矽複合材料的等電點在pH5.0~5.3,除此之外我們可以做出不同粒徑大小的實心和中空的複合粒子-二氧化矽。經由鍛燒過後,我們可以得到具有2~10nm多孔性的二氧化矽粒子。我們利用聚電解質複合粒子依序進行金奈米粒子成核反應和礦化反應,即可製備成聚電解質複合粒子-二氧化矽-奈米金粒子複合材料。我們藉由UV-vis去觀察聚電解質複合粒子進行成核反應的過程,另外我們利用DLS檢測發現,當改變複合粒子裡的羧基和四氯金酸之間的莫耳比,會影響複合粒子的粒徑。另外我們利用TEM可觀察到金奈米粒子被包覆在聚電解子複合粒子-二氧化矽裡面。其新穎的複合材料,對於蛋白質和藥物傳輸具有很大的潛力。
英文摘要 In this study, the formation of polyelectrolyte complexes (PEC) between poly(L-glutamic acid) (PGA) and Poly(2-(N,N-diethylamino) ethylmethacrylate) (PDEAEMA) in solution was reported. In addition, the well dispersed PEC-silica and PEC-silica-gold composite particles can be obtained by using the PEC particles as templates for silica mineralization and/or as mediating agents for nucleation of gold nanoparticles. PDEAEMA and PGA with different chain lengths were prepared by using atom transfer radical polymerization (ATRP) and N-carboxyanhydride (NCA) ring-opening polymerization, respectively. PEC particles were formed by the electrostatic interaction between positively charged PDEAEMA and negatively charged PGA at neutral condition and characterized by DLS, Zeta potential, TEM, and CD, respectively. The results showed that the size, surface charge, morphology, and secondary structure of the PEC particles were influenced by the salt concentration, chain length and weight ratio of PDEAEMA and PGA. The PEC particles with narrow size distribution can be prepared. PDEAEMA and PGA can complex to form micelle or vesicle, depending on the salt concentration and chain length. The surface charge of the PEC particles prepared with different compositions was determined by Zeta potential measurements.
PEC-silica organic-inorganic composite particles can be prepared by using biomimetic approach and were characterized by FTIR, TGA, DLS, and TEM analysis. The PEC particles with most high complex efficiency were used as templates for the mineralization of silica. FTIR analysis confirmed that silica mineralized in the PEC particles. TGA analysis showed that the weight ratio of organic and inorganic compounds was correlated with the weight percentage and chain length of PDEAEMA. The iso-electric points of the as-prepared PEC-silica composite particles were found to be at pH 5.0~5.4, regardless the PEC composition. PEC-silica hollow and solid particle with different sizes can be prepared. After calcinations, the silica particles were to found be highly porous with sizes mainly between 2 and 10 nm. The PEC-silica-gold composite particles can be served as both mediating agents and templates for nucleation and growth of gold nanoparticles and silica mineralization. The nucleation and growth of gold nanoparticles mediated by the PEC particles were monitored by UV-vis. DLS analysis showed that the size of complex particles was influenced by the mole ratio of HAuCl4 and carboxyl group. TEM characterization revealed that the gold nanoparticle was encapsulated in the composite particles. It is expected that these novel composite materials would have potential applications in areas such as protein/drug delivery and encapsulation.
論文目次 目錄
摘要 …………………………………………………………………………….II
Abstract ……………………………………………………………………...……IV
誌謝 ……………………………………………………………………...........VI
目錄 …………………………………………………………………………..VII
圖目錄 ……………………………………………………………………...…...XII
表目錄 ………………………………………………………………………...XVII
第一章 緒論 ………………………………………………………………………..1
1.1 前言 ...……………………………………………………………………...1
1.1.1 生物性材料簡介 ……………………………………………............1
1.1.2奈米粒子在藥物傳輸上的發展……………………………………1 1.1.3 金奈米粒子在藥物傳輸上的應用…………………………............3
1.2 研究動機與目的 …………………………………………………………..4
第二章 文獻回顧 …………………………………………………………………..5
2.1 胺基酸基本性質 …………………………………………………………..5
2.1.1 簡介胺基酸及其結構 ………………………………………............5
2.1.2 蛋白質的結構 ………………………………………………............7
2.2聚甲基丙烯酸N,N-二乙氨基乙酯(PDEAEMA)材料簡介….....…………11
2.3聚電解質複合粒子………………………………………..…..........……...12
2.3.1簡介聚電解質複合物………………………………………………..12
2.3.2 聚電解質複合物的分類…………………………………….............12
2.3.3聚電解質複合物的應用……………………………………………..14
2.4奈米載體………………………………………………….………..............16
2.4.1 簡介奈米載體 ……………………………………………………..16
2.4.2 奈米藥物傳輸的方式 ……………………………………………..16
2.4.3 EPR effect ( Enhanced Permeation and Retention effect) ………….16
2.4.4靜脈注射奈米載體之優點…..……………………………………..16
2.5金奈米粒子之簡介 ……………………………………………………….18
2.5.1表面電漿共振(Surface Plasmon Resonance, SPR) ………………..19
2.5.2製備金奈米粒子…..………………………………………………..21
2.5.3保護劑(capping agent)的作用 ……………………………………..22
2.5.4金奈米粒子的應用…………………………………………………24
2.6氧化還原法 ……………………………………………………………….27
2.6.1檸檬酸鈉還原法………………………………………...................28
2.6.2 Brust 還原法 ………………………………………………………28
2.6.3 晶種促進成長法(Seed mediated method) ………………………...29
2.7 有機無機複合材料 ………………………………………………............33
2.7.1 生物材料與礦化作用的發展……………………………………..33
2.7.2 有機/無機複合材料簡介 ………………………………………….33
2.7.3 聚賴胺酸沉析二氧化矽 …………………………………………..34
2.8活性自由基聚合反應簡介 …………………………………………….…36
2.8.1活性自由基聚合(Living Free Radical Polymerization)…………...37
第三章 實驗步驟與實驗原理 ……………………………………………………40
3.1 實驗藥品與儀器設備 ……………………………………………………40
3.1.1 實驗藥品 …………………………………………………………..40
3.1.2 儀器設備 …………………………………………………………..41
3.2聚胺基酸和聚甲基丙烯酸N,N-二乙氨基乙酯之合成 …………............43
3.2.1純化THF、正己烷之乾燥方式 …………………………………..43
3.2.2 胺基酸之N-carboxyanhydrides(NCAs)的製備 ……………….….43
3.2.3 利用一級胺對NCAs開環合成聚胺基酸 ………………………..45
3.2.4 利用Nickel起始劑對NCAs開環合成聚胺基酸 ……………….45
3.2.5 聚胺基酸之保護基(R-group)去除 ………………………………..45
3.2.6純化聚甲基丙烯酸N,N-二乙氨基乙酯單體 ……………………..45
3.2.7純化CuBr觸媒 ……………………………………………………46
3.2.8利用ATRP合成聚甲基丙烯酸N,N-二乙氨基乙酯 ……………..46
3.3複合粒子-二氧化矽-金奈米粒子複合材料製備 ………………………...47
3.3.1複合粒子製備 ……………………………………………………...47
3.3.2複合粒子-二氧化矽複合材料製備 ………………………….…….47
3.3.3二氧化矽奈米孔洞材料 …………………………………………...47
3.3.4複合粒子-二氧化矽-金奈米粒子複合材料 ………………............47
3.4 特性分析與性質測試 …………………………………………………....48
3.4.1 核磁共振光譜儀 ……………………………………………….….48
3.4.2 凝膠滲透層析儀 …………………………………………………..48
3.4.3 動態光散射粒徑分析儀…………………………………….…….49
3.4.4 高解析場發射掃描式電子顯微鏡 ……………………….……….51
3.4.5 穿透式電子顯微鏡 ……………………………………….……….52
3.4.6紅外線光譜儀……… ………………………………………….…..52
3.4.7圓二色光譜儀 ……………………………………………………...53
3.4.8熱重分析儀 ………………………………………………………...54
第四章 結果與討論 ………………………………………………………...…….56
4.1聚胺基酸高分子和聚甲基丙烯酸N,N-二乙氨基乙酯之定義 ………....57
4.1.1聚麩氨酸高分子和聚甲基丙烯酸N,N-二乙氨基乙酯 ……….….57
4.1.2聚麩氨酸和聚甲基丙烯酸N,N-二乙氨基乙酯之分子量與鏈長………………………………………………………............................58
4.2利用聚麩氨酸和聚甲基丙烯酸N,N-二乙基乙酯形成聚電解質複
合物 ……………………………………………………………………….….60
4.2.1聚電解質複合粒子之形成 ………………………………………..60
4.2.2聚麩氨酸和聚甲基丙烯酸N,N-二乙氨基乙酯之分子量以及重量百分率 ……………………………………………………………….…...61
4.2.3聚電解質複合粒子在DI水中的粒徑分布 ………………….……66
4.2.4溶液離子強度對於複合粒子的影響 ………………………….…..67
4.2.5聚麩氨酸和聚甲基丙烯酸N,N-二乙氨基乙酯形成聚電解質複合物之二級結構變化 ……………………………………………………....70
4.2.6聚麩氨酸和聚甲基丙烯酸N,N-二乙氨基乙酯形成聚電解質複合物之自組裝結構 ………………………………………………………....73
4.2.7聚麩氨酸和聚甲基丙烯酸N,N-二乙氨基乙酯形成聚電解質複合物之溫度效應 …………………………………………………………....79
4.3多孔性複合材料 ……………………………………………….………....80
4.3.1聚麩氨酸和聚甲基丙烯酸N,N-二乙氨基乙酯-二氧化矽複合材料 ………………………………………………………………………..…..80
4.3.2高分子複合粒子-二氧化矽材料之二級結構 …………………..…82
4.3.3聚電解質/二氧化矽複合粒子之形態 ………………………..……83
4.3.4聚電解質/二氧化矽複合粒子在不同pH的變化 ……………..….86
4.3.5二氧化矽複合材料之中孔(mesopore)特性 …………………….....89
4.4高分子複合粒子/二氧化矽/金奈米粒子複合材料 ………………….…..91
4.4.1複合粒子加入HAuCl4後粒徑的變化 …………………………...91
4.4.2利用UV-visible spectra 監測四氯金酸在和PGA-c- PDEAEMA 溶液中反應情形……………………………………………………………92
4.4.3高分子複合粒子/二氧化矽/金奈米粒子複合材料之形態 ……….94
第五章 結論 ………………………………………………………………..……..96
參考文獻 ………………………………………………………………......….…...99
參考文獻 1. Gaumet, M., Vargas, A., Gurny, R. & Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics 69, 1-9 (2008).
2. Kattumuri, V. et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: In vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3, 333-341 (2007).
3. De Bernardez-Clark, E. & Georgiou, G. in Protein Refolding 1-20 (American Chemical Society, 1991).
4. Kaiser, E.T. & Kezdy, F.J. AMPHIPHILIC SECONDARY STRUCTURE - DESIGN OF PEPTIDE-HORMONES. Science 223, 249-255 (1984).
5. Achilleos, M., Krasia-Christoforou, T. & Patrickios, C.S. Amphiphilic Model Conetworks Based on Combinations of Methacrylate, Acrylate, and Styrenic Units:  Synthesis by RAFT Radical Polymerization and Characterization of the Swelling Behavior. Macromolecules 40, 5575-5581 (2007).
6. Agut, W., Taton, D. & Lecommandoux, S. A Versatile Synthetic Approach to Polypeptide Based Rod−Coil Block Copolymers by Click Chemistry. Macromolecules 40, 5653-5661 (2007).
7. Dumitriu, S. & Chornet, E. Inclusion and release of proteins from polysaccharide-based polyion complexes. Advanced Drug Delivery Reviews 31, 223-246 (1998).
8. Sato, H., Maeda, M. & Nakajima, A. MECHANOCHEMISTRY AND PERMEABILITY OF POLYELECTROLYTE COMPLEX MEMBRANES COMPOSED OF POLYVINYL-ALCOHOL) DERIVATIVES. Journal of Applied Polymer Science 23, 1759-1767 (1979).
9. Senuma, M., Kuwabara, S., Kaeriyama, K., Hase, F. & Shimura, Y. POLYMER COMPLEX FROM COPOLYMERS OF ACRYLONITRILE AND IONIC VINYL BENZYL COMPOUNDS. Journal of Applied Polymer Science 31, 1687-1697 (1986).
10. Ito, H., Shibata, T., Miyamoto, T., Noishiki, Y. & Inagaki, H. Formation of polyelectrolyte complexes between cellulose derivatives and their blood compatibility. Journal of Applied Polymer Science 31, 2491-2500 (1986).
11. Sittinger, M., Lukanoff, B., Burmester, G.R. & Dautzenberg, H. Encapsulation of artificial tissues in polyelectrolyte complexes: preliminary studies. Biomaterials 17, 1049-1051 (1996).
12. Mansfeld, J., Förster, M., Hoffmann, T., Schellenberger, A. & Dautzenberg, H. Coimmobilization of Yarrowia lipolytica cells and invertase in polyelectrolyte complex microcapsules. Enzyme and Microbial Technology 17, 11-17 (1995).
13. Wheatley, M.A., Chang, M., Park, E. & Langer, R. Coated alginate microspheres: Factors influencing the controlled delivery of macromolecules. Journal of Applied Polymer Science 43, 2123-2135 (1991).
14. Chen, J., Jo, S. & Park, K. Polysaccharide hydrogels for protein drug delivery. Carbohydrate Polymers 28, 69-76 (1995).
15. Yoshida, H. & Kataoka, T. Adsorption of BSA on cross-linked chitosan: The equilibrium isotherm. The Chemical Engineering Journal 41, B11-B15 (1989).
16. Dubin, P.L., Gao, J. & Mattison, K. Protein Purification by Selective Phase Separation with Polyelectrolytes. Separation & Purification Reviews 23, 1-16 (1994).
17. Protein purification: Micro to macro. Journal of Cellular Biochemistry 35, 163-186 (1987).
18. Cordes, R.M., Sims, W.B. & Glatz, C.E. Precipitation of Nucleic Acids with Poly (ethyleneimine). Biotechnology Progress 6, 283-285 (1990).
19. Knorr, D. & Daly, M. Mechanics and diffusional changes observed in multilayer chitosan/alginate coacervate capsules. Process Biochem. 23, 48-50 (1988).
20. Fukuda, H. & Kikuchi, Y. In vitro clot formation on the polyelectrolyte complexes of sodium dextran sulfate with chitosan. Journal of Biomedical Materials Research 12, 531-539 (1978).
21. Kikuchi, Y. & Fukuda, H. Polyelectrolyte complex of sodium dextran sulfate with chitosan. Die Makromolekulare Chemie 175, 3593-3596 (1974).
22. Kokufuta, E., Shimizu, H. & Nakamura, I. Salt linkage formation of poly(diallyldimethylammonium chloride) with acidic groups in the polyion complex between human carboxyhemoglobin and potassium poly(vinyl alcohol) sulfate. Macromolecules 14, 1178-1180 (1981).
23. Kokufuta, E., Shimizu, H. & Nakamura, I. Stoichiometric complexation of human serum albumin with strongly acidic and basic polyelectrolytes. Macromolecules 15, 1618-1621 (1982).
24. Sternberg, M. & Hershberger, D. Separation of proteins with polyacrylic acids. Biochimica et Biophysica Acta (BBA) - Protein Structure 342, 195-206 (1974).
25. Jendrisak, J.J. & Burgess, R.R. Large-scale purification of wheat germ DNA-dependent RNA polymerase II. Biochemistry 14, 4639-4645 (1975).
26. Dubin, P.L. & Murrell, J.M. Size distribution of complexes formed between poly(dimethyldiallylammonium chloride) and bovine serum albumin. Macromolecules 21, 2291-2293 (1988).
27. Skorikova, Y.Y. et al. Polyelectrolyte complexes based on chitosan. Polymer Science U.S.S.R. 30, 49-55 (1988).
28. Hayakawa, K., Ohta, J., Maeda, T., Satake, I. & Kwak, J.C.T. Spectroscopic studies of dye solubilizates in micellelike complexes of surfactant with polyelectrolyte. Langmuir 3, 377-382 (1987).
29. Ruckenstein, E., Huber, G. & Hoffmann, H. Surfactant aggregation in the presence of polymers. Langmuir 3, 382-387 (1987).
30. Leung, P.S., Goddard, E.D., Han, C. & Glinka, C.J. A study of polycation-anionic-surfactant systems. Colloids and Surfaces 13, 47-62 (1985).
31. Dubin, P.L., The, S.S., Gan, L.M. & Chew, C.H. Static light scattering of polyelectrolyte-micelle complexes. Macromolecules 23, 2500-2506 (1990).
32. Sudbeck, E.A., Dubin, P.L., Curran, M.E. & Skelton, J. Dye solubilization in polyelectrolyte-micelle complexes. Journal of Colloid And Interface Science 142, 512-517 (1991).
33. Dubin, P.L., Rigsbee, D.R., Gan, L.M. & Fallon, M.A. Equilibrium binding of mixed micelles to oppositely charged polyelectrolytes. Macromolecules 21, 2555-2559 (1988).
34. Dubin, P.L. & Davis, D. Stoichiometry and coacervation of complexes formed between polyelectrolytes and mixed micelles. Colloids and Surfaces 13, 113-124 (1985).
35. Kanayama, N. et al. A PEG-Based Biocompatible Block Catiomer with High Buffering Capacity for the Construction of Polyplex Micelles Showing Efficient Gene Transfer toward Primary Cells. ChemMedChem 1, 439-444 (2006).
36. Koide, A. et al. Semipermeable Polymer Vesicle (PICsome) Self-Assembled in Aqueous Medium from a Pair of Oppositely Charged Block Copolymers:  Physiologically Stable Micro-/Nanocontainers of Water-Soluble Macromolecules. Journal of the American Chemical Society 128, 5988-5989 (2006).
37. Davis, M.E., Chen, Z. & Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7, 771-782 (2008).
38. Hobbs, S.K. et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences 95, 4607-4612 (1998).
39. Aiken Iii, J.D. & Finke, R.G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. Journal of Molecular Catalysis A: Chemical 145, 1-44 (1999).
40. Kelly, K.L., Coronado, E., Zhao, L.L. & Schatz, G.C. The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 107, 668-677 (2002).
41. Mirkin, C.A. Programming the Assembly of Two- and Three-Dimensional Architectures with DNA and Nanoscale Inorganic Building Blocks†,‡. Inorganic Chemistry 39, 2258-2272 (2000).
42. Goodman, S.L., Hodges, G.M., Trejdosiewicz, L.K. & Livingston, D.C. Colloidal gold markers and probes for routine application in microscopy. Journal of Microscopy 123, 201-213 (1981).
43. Brown, K.R., Walter, D.G. & Natan, M.J. Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape. Chemistry of Materials 12, 306-313 (1999).
44. Han, M.Y. & Quek, C.H. Photochemical Synthesis in Formamide and Room-Temperature Coulomb Staircase Behavior of Size-Controlled Gold Nanoparticles. Langmuir 16, 362-367 (1999).
45. Yonezawa, Y., Sato, T., Kuroda, S. & Kuge, K.-i. Photochemical formation of colloidal silver: peptizing action of acetone ketyl radical. Journal of the Chemical Society, Faraday Transactions 87, 1905-1910 (1991).
46. Chen, C.D., Yeh, Y.T. & Wang, C.R.C. The fabrication and photo-induced melting of networked gold nanostructures and twisted gold nanorods. Journal of Physics and Chemistry of Solids 62, 1587-1597 (2001).
47. Reetz, M.T. & Helbig, W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters. Journal of the American Chemical Society 116, 7401-7402 (1994).
48. Chang, S.-S., Shih, C.-W., Chen, C.-D., Lai, W.-C. & Wang, C.R.C. The Shape Transition of Gold Nanorods. Langmuir 15, 701-709 (1998).
49. Reetz, M.T., Helbig, W. & Quaiser, S.A. Electrochemical Preparation of Nanostructural Bimetallic Clusters. Chemistry of Materials 7, 2227-2228 (1995).
50. Okitsu, K., Bandow, H., Maeda, Y. & Nagata, Y. Sonochemical Preparation of Ultrafine Palladium Particles. Chemistry of Materials 8, 315-317 (1996).
51. Sangregorio, C., Galeotti, M., Bardi, U. & Baglioni, P. Synthesis of Cu3Au Nanocluster Alloy in Reverse Micelles. Langmuir 12, 5800-5802 (1996).
52. Toshima, N., Harada, M., Yamazaki, Y. & Asakura, K. Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. The Journal of Physical Chemistry 96, 9927-9933 (1992).
53. Turkevich, J. & Kim, G. Palladium: Preparation and Catalytic Properties of Particles of Uniform Size. Science 169, 873-879 (1970).
54. Link, S., Wang, Z.L. & El-Sayed, M.A. Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. The Journal of Physical Chemistry B 103, 3529-3533 (1999).
55. Li, X., Li, Y., Tan, Y., Yang, C. & Li, Y. Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant. The Journal of Physical Chemistry B 108, 5192-5199 (2004).
56. Boal, A.K. et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746-748 (2000).
57. Latham, A.H. & Williams, M.E. Versatile Routes toward Functional, Water-Soluble Nanoparticles via Trifluoroethylester−PEG−Thiol Ligands. Langmuir 22, 4319-4326 (2006).
58. Kanaras, A.G., Kamounah, F.S., Schaumburg, K., Kiely, C.J. & Brust, M. Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chemical Communications, 2294-2295 (2002).
59. Biggs, S., Mulvaney, P., Zukoski, C.F. & Grieser, F. Study of Anion Adsorption at the Gold-Aqueous Solution Interface by Atomic Force Microscopy. Journal of the American Chemical Society 116, 9150-9157 (1994).
60. Joshi, A.M., Tucker, M.H., Delgass, W.N. & Thomson, K.T. CO adsorption on pure and binary-alloy gold clusters: A quantum chemical study. Journal of Chemical Physics 125 (2006).
61. Spendelow, J.S. & Wieckowski, A. Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts. Physical Chemistry Chemical Physics 6, 5094-5118 (2004).
62. Holgate, C.S., Jackson, P., Cowen, P.N. & Bird, C.C. Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 31, 938-44 (1983).
63. Lackie, P. Immunogold silver staining for light microscopy. Histochemistry and Cell Biology 106, 9-17 (1996).
64. Jia, J. et al. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor:  Self-Assembling Gold Nanoparticles to Three-Dimensional Sol−Gel Network. Analytical Chemistry 74, 2217-2223 (2002).
65. Kim, J. et al. Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angewandte Chemie 118, 7918-7922 (2006).
66. Chen, J. et al. Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells. Nano Letters 7, 1318-1322 (2007).
67. LaMer, V.K. & Dinegar, R.H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society 72, 4847-4854 (1950).
68. Turkevich, J., Stevenson, P.C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 11, 55-75 (1951).
69. Turkevich, J., Stevenson, P.C. & Hillier, J. The Formation of Colloidal Gold. The Journal of Physical Chemistry 57, 670-673 (1953).
70. Laaksonen, T., Ahonen, P., Johans, C. & Kontturi, K. Stability and Electrostatics of Mercaptoundecanoic Acid-Capped Gold Nanoparticles with Varying Counterion Size. ChemPhysChem 7, 2143-2149 (2006).
71. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. & Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. Journal of the Chemical Society, Chemical Communications, 801-802 (1994).
72. Jana, N.R., Gearheart, L. & Murphy, C.J. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chemistry of Materials 13, 2313-2322 (2001).
73. Poulsen, N., Sumper, M. & Kröger, N. Biosilica Formation in Diatoms: Characterization of Native Silaffin-2 and Its Role in Silica Morphogenesis. Proceedings of the National Academy of Sciences of the United States of America 100, 12075-12080 (2003).
74. Estroff, L.A. & Hamilton, A.D. At the Interface of Organic and Inorganic Chemistry:  Bioinspired Synthesis of Composite Materials. Chemistry of Materials 13, 3227-3235 (2001).
75. Sanchez, C., Arribart, H. & Giraud Guille, M.M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4, 277-288 (2005).
76. Aizenberg, J. et al. Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale. Science 309, 275-278 (2005).
77. Poulsen, N., Sumper, M. & Kröger, N. (National Academy of Sciences).
78. Cha, J.N. et al. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proceedings of the National Academy of Sciences of the United States of America 96, 361-5 (1999).
79. Jensen, M., Keding, R., Höche, T. & Yue, Y. Biologically Formed Mesoporous Amorphous Silica. Journal of the American Chemical Society 131, 2717-2721 (2009).
80. Mann, S. Biomineralization and biomimetic materials chemistry. Journal of Materials Chemistry 5, 935-946 (1995).
81. Judeinstein, P. & Sanchez, C. Hybrid organic-inorganic materials: a land of multidisciplinarity. Journal of Materials Chemistry 6, 511-525 (1996).
82. Wang, G.-H. & Zhang, L.-M. Using Novel Polysaccharide−Silica Hybrid Material to Construct An Amperometric Biosensor for Hydrogen Peroxide. The Journal of Physical Chemistry B 110, 24864-24868 (2006).
83. Mahony, O. et al. Silica-Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration. Advanced Functional Materials 20, 3835-3845 (2010).
84. Rashidova, S.S. et al. Bionanocompositional chitosan-silica sorbent for liquid chromatography. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 800, 49-53 (2004).
85. Yeh, J.-T., Chen, C.-L. & Huang, K.-S. Synthesis and properties of chitosan/SiO2 hybrid materials. Materials Letters 61, 1292-1295 (2007).
86. Müller, M., Buchet, R. & Fringeli, U.P. 2D-FTIR ATR Spectroscopy of Thermo-Induced Periodic Secondary Structural Changes of Poly-(l)-lysine:  A Cross-Correlation Analysis of Phase-Resolved Temperature Modulation Spectra. The Journal of Physical Chemistry 100, 10810-10825 (1996).
87. Yang, C.-T., Wang, Y., Yu, S. & Chang, Y.-C.I. Controlled Molecular Organization of Surface Macromolecular Assemblies Based on Stimuli-Responsive Polypeptide Brushes. Biomacromolecules 10, 58-65 (2008).
88. Wu, J.-C., Wang, Y., Chen, C.-C. & Chang, Y.-C. Biomimetic Synthesis of Silica Films Directed by Polypeptide Brushes. Chemistry of Materials 20, 6148-6156 (2008).
89. Deming, T.J. Facile synthesis of block copolypeptides of defined architecture. Nature 390, 386-389 (1997).
90. Gaspard, J., Silas, J.A., Shantz, D.F. & Jan, J.-S. Supramolecular assembly of lysine-b-glycine block copolypeptides at different solution conditions. Supramolecular Chemistry 22, 178-185 (2009).
91. Daly, W.H. & Poché, D. The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate. Tetrahedron Letters 29, 5859-5862 (1988).
92. Hadjichristidis, N., Iatrou, H., Pitsikalis, M. & Sakellariou, G. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides. Chemical Reviews 109, 5528-5578 (2009).
93. Binger, P., Doyle, M.J., McMeeking, J., Krüger, C. & Tsay, Y.-H. Metallacycloalkanes: I. Preparation and characterisation of α,α′-bipyridyl-5-nickela-3,3,7,7-tetramethyl-trans-tricyclo[4.1.0.02,4]heptane. Journal of Organometallic Chemistry 135, 405-414 (1977).
94. Lai, J.-K., Chuang, T.-H., Jan, J.-S. & Wang, S.S.-S. Efficient and stable enzyme immobilization in a block copolypeptide vesicle-templated biomimetic silica support. Colloids and Surfaces B: Biointerfaces 80, 51-58 (2010).
95. Hawkins, K.M., Wang, S.S.S., Ford, D.M. & Shantz, D.F. Poly-l-Lysine Templated Silicas:  Using Polypeptide Secondary Structure to Control Oxide Pore Architectures. Journal of the American Chemical Society 126, 9112-9119 (2004)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw