進階搜尋


 
系統識別號 U0026-2907201110282100
論文名稱(中文) 以溶劑萃取法回收應用在界面活性劑萃取程序的非離子界面活性劑的研究
論文名稱(英文) Study on Recovery of Nonionic Surfactants by Solvent Extraction after Surfactant-Based Extraction Processes
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 黃敏獅
研究生(英文) Petrick Gideon Effendi
學號 N36987096
學位類別 碩士
語文別 英文
論文頁數 98頁
口試委員 指導教授-陳炳宏
口試委員-林睿哲
口試委員-侯聖澍
口試委員-李岱洲
口試委員-李澤民
中文關鍵字 濁點萃取(CPE)  L3相萃取  多環芳香烴(PAHs)  非離子表面活性劑  溶劑萃取  烷烴    ASTM D2959 - 95  HPLC分析 
英文關鍵字 cloud point extraction (CPE)  L3-phase extraction  polycyclic aromatic hydrocarbons (PAHs)  nonionic surfactant  solvent extraction  alkane  alcohol  ASTM D2959-95  HPLC analysis 
學科別分類
中文摘要 溶劑萃取法已成功地試圖解除9種多環芳香烴(PAHs)的化合物而且追還包含在富含表面活性劑之液相的非離子表面活性劑,Tergitol 15-S-7和Tergitol 15-S-5。以使這程序更經濟環保,這種追回是必要的。個別濃度的PAHs之測量是利用具備UV - Vis和螢光檢測器的HPLC。我們藉由標準測試方法ASTM D2959 – 95來表面活性劑濃度之測定。
在本研究,探討各種烷烴從共存之PAH溶質來分離各種表面活性劑。烷烴包括正辛烷,正癸烷,正十二烷,正十四烷及正十六烷。我們也採用各種醇類,如乙醇,正丙醇,異丙醇,正丁醇和異丁醇來降低系統的疏水性。通過引進這些溶劑,包含PA的富含表面活性劑之液相往往共存地相分離成兩個液相:上層有機之液相和下層親水性之液相。在溶劑萃取後,我們在下層親水性之液相沒有檢測到PAHs,而表面活性劑可能在兩個液相同時分佈。
在探討各種烷烴的研究中,因溶劑萃取後在上層有機之液相產生最大多環芳烴追回率,同時在下層親水性之液相保留更多的表面活性劑,採用正十二烷的效果視為最佳。在濁點萃取後(CPE) ,藉由這種溶劑和改變溶液重量比例,ca. 60-63%的表面活性劑可以從富含表面活性劑之液相追回。最佳條件為 1:1或1:0.75富含表面活性劑之液相/溶劑之重量比。在L3相萃取後,利用富含表面活性劑之液相/正十二烷的1:1重量比之加法,加用15 WT -%的正丙醇或異丙醇獲得56%載於富含表面活性劑之液相的TERGITOL 15 - S – 5之追回率。

關鍵字:濁點萃取(CPE),L3相萃取; 多環芳香烴(PAHs),非離子表面活性劑,溶劑萃取;烷烴,醇,ASTM D2959 - 95,HPLC分析
英文摘要 Solvent extraction method has been successfully attempted to remove 9 compounds of polycyclic aromatic hydrocarbons (PAHs) and to recover nonionic surfactant Tergitol 15-S-7 and Tergitol 15-S-5 contained in the surfactant-rich phase. This recovery is necessary to make the process more economical and environmental friendly. The HPLCs equipped with UV-Vis and Fluorescence detectors were used to determine individual concentration of PAHs. The surfactant concentration was measured according to the standard test method ASTM D2959-95.
In this work, various alkanes have been employed to separate surfactants from coexisting PAH solutes. These alkanes include n-octane, n-decane, n-dodecane, n-tetradecane, and n-hexadecane. Various alcohols, such as ethanol, n-propanol, iso-propanol, n-butanol, and iso-butanol were also used to decrease the hydrophobicity of the system. With introduction of these solvents, the PAH-containing surfactant-rich phase tends to phase-separate into two coexisting phases: the upper organic phase and the lower hydrophilic phase. No PAHs was detected in the lower hydrophilic phase after solvent extraction, while the surfactant might be distributed in both phases.
Among various alkanes used, n-dodecane worked the best since it produced the maximum PAHs recovery in the upper organic phase after solvent extraction, while retaining more surfactant in the lower hydrophilic phase. By using this solvent and several variations of weight ratio, ca. 60-63% of surfactant could be recovered from the surfactant-rich phase after a CPE. The optimal condition was 1:1 or 1:0.75 surfactant-rich phase/solvent weight ratios. Addition of n-dodecane in 1:1 weight ratio with surfactant-rich phase after L3-phase extraction, added with 15 wt-% of n-propanol or iso-propanol can recover 56% of Tergitol 15-S-5 contained in the surfactant-rich phase.

Keywords: cloud point extraction (CPE); L3-phase extraction; polycyclic aromatic hydrocarbons (PAHs); nonionic surfactant; solvent extraction; alkane; alcohol; ASTM D2959-95; HPLC analysis
論文目次 Abstract.................................................................................................................................. i
摘要………………………................................................................................................... ii
Acknowledgement............................................................................................................... iii
Contents............................................................................................................................... iv
List of Tables........................................................................................................................ vii
List of Figures..................................................................................................................... viii

Chapter I Introduction................................................................................................... 1
1.1. Research Background............................................................................. 1
1.2. Objectives............................................................................................... 4
1.3. Thesis Structure...................................................................................... 4

Chapter II Literature Review.......................................................................................... 8
2.1. Polycyclic Aromatic Hydrocarbons (PAHs)........................................... 8
2.2. Surfactant..............................................................................................10
2.2.1. Nature of Surfactants................................................................... 11
2.2.2. Types of Surfactants.................................................................... 12
2.2.3. Synthesis of Alcohol and Phenol Ethoxylates............................. 13
2.2.3.1. Alcohol Ethoxylates....................................................... 14
2.2.3.2. Alkylphenol Ethoxylates................................................ 16
2.2.4. Physical Properties of Nonionic Surfactant................................. 17
2.2.4.1. Solubility Characteristic of Nonionic Surfactant........... 18
2.2.4.2. Cloud Point of Nonionic Surfactant............................... 18
2.2.4.3. Wetting of Nonionic Surfactant..................................... 19
2.2.4.4. Foaming of Nonionic Surfactant.................................... 19
2.2.4.5. Biodegradation of Nonionic Surfactant......................... 20
2.2.4.6. Application of Nonionic Surfactant............................... 21
2.2.5. Analysis Method of Ethoxylated Alcohols.................................. 21
2.3. Extraction Technique............................................................................ 23
2.4. Cloud Point Extraction......................................................................... 27
2.4.1. Micellar System......................................................................... 27
2.4.2. Separation by Cloud Point Extraction....................................... 28
2.4.3. Optimization of Cloud-Point Extraction Process....................... 31
2.4.4. Analytical Determinations......................................................... 33
2.5. L3-Phase Separation............................................................................. 33
2.6. Separation by Inter-Phase Mass Transfer............................................. 37
2.7. Solvent Extraction to Remove Low-Volatility Organic Compounds... 38

Chapter III Experimental Method.................................................................................. 43
3.1. Framework of the Experiment.............................................................. 43
3.2. Materials............................................................................................... 44
3.2.1. Polycyclic Aromatic Hydrocarbons (PAHs) Compound........... 44
3.2.2. Surfactant................................................................................... 45
3.2.3. Other Materials.......................................................................... 45
3.3. Experimental Instrument...................................................................... 46
3.4. Experimental Procedures..................................................................... 47
3.4.1. Cloud Point Extraction (CPE)................................................... 47
3.4.2. L3-Phase Extraction................................................................... 48
3.4.3. Solvent Extraction..................................................................... 48
3.4.4. Analytical Procedure.................................................................. 49
3.5. Data Analysis........................................................................................ 51
3.5.1. Limit of Detection (LOD).......................................................... 51
3.5.2. Preconcentration Factor (fC)...................................................... 51
3.5.3. PAHs Recovery.......................................................................... 51
3.5.4. Surfactant Recovery................................................................... 52

Chapter IV Results and Discussion................................................................................ 54
4.1. Determination of Polycyclic Aromatic Hydrocarbons by HPLC......... 54
4.1.1. HPLC UV/Vis Detector Analysis............................................... 54
4.1.2. Calibration Curve Using HPLC UV/Vis Detector..................... 56
4.1.3. The Wavelength Analysis of HPLC Fluororesence Detector..... 61
4.1.4. Calibration Curve Using Fluororesence Detector...................... 65
4.2. Cloud Point Extraction, L3-Phase Extraction, and Preconcentration
Factor.................................................................................................... 70
4.3. Solvent Extraction in Recovering Tergitol 15-S-7 after CPE............... 72
4.3.1. Effect of Alkanes as Extractants (Solvents)............................... 72
4.3.2. Effect of Surfactant-Rich Phase/Solvent Weight Ratio.............. 75
4.4. Solvent Extraction in Recovering Tergitol 15-S-5 after L3-Phase
Extraction.............................................................................................. 78
4.4.1. Effect of Alkanes as Extractants (Solvents)............................... 79
4.4.2. Effect of Alkanes Added with Ethanol...................................... 82
4.4.3. Effect of Alkanes Added with Butanol...................................... 84
4.4.4. Effect of Alkanes Added with Propanol.................................... 87

Chapter V Conclusion.................................................................................................. 90
References........................................................................................................................... 91
參考文獻 [1] Tsai, P.J., et al., “Health-Risk Assessment for Workers Exposed to Polycyclic Aromatic Hydrocarbons (PAHs) in a Carbon Black Manufacturing Industry”, Sci. Total Environment, 278(1-3), p. 137-150, (2001)
[2] Luch, A., “The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons”, London: Imperial College Press. ISBN 1-86094-417-5., (2005)
[3] Larsson, B.K., G.P. Sahlberg, A.T. Eriksson, and L.A. Busk, “Polycyclic Aromatic Hydrocarbons in Grilled Food, Polycyclic Aromatic Hydrocarbons – Occurrence in foods, dietary exposure and health effects”, J. Agric. Food Chem. 31, p. 867-873, (2002)
[4] Agency for Toxic Substances and Disease Registry, “Polycyclic Aromatic Hydrocarbons (PAHs), http://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=121&tid=25”, (1996)
[5] U.S. Environmental Protection Agency. “Integrated Risk Information System (IRIS) on Polycyclic Organic Matter”, National Center for Environmental Assessment, Office of Research and Development: Washington, DC, (1999)
[6] Council of European Communities, Directive 75/440/EEC, Off. J. Commun., L194, p.26, (1975)
[7] Council of European Communities, Directive 79/869/EEC, Off. J. Commun., L271, p.44, (1979)
[8] Council of European Communities, Directive 80/778/EEC, Off. J. Commun., L229, p.11, (1980)
[9] Kicinski, H.G., S. Adamek, and A. Kettrup, “Solid-Phase Extraction and HPLC-Analysis of Polycyclic Aromatic Hydrocarbons in Water, Soil, and Oil”, Fresenius Zeitschrift Fur Analytische Chemie, 334(7), p.667-677, (1989)
[10] Villaizan, M., J.S. Lozano, and M.A.L. Yusty, “Determination of Polycyclic Aromatic Hydrocarbons in Drinking and Surface Waters from Galicia (NW SPAIN) by Constant Wavelength Synchronous Spectrofluorometry”, Talanta, 42(7), p. 967-970, (1995)
[11] L.A. Robbins, “Liquid-Liquid Extraction, in: R.H. Perry, D. Green (Eds.), Perry’s Chemical Engineering Handbook, sixth ed. (Chapter 15)”, McGraw-Hill, New York, (1984)
[12] Llompart, M.P., R.A. Lorenzo, R. Cela, K. Li, K. Jacqueline, M.R Bélanger, and J.R Jocelyn Paré, “Evaluation of Supercritical Fluid Extraction, Microwave-Assisted Extraction and Sonification in the Determination of Phenolic Compounds from Various Soil Matrices”, J. Chromatogr. A, 774, 243-251, (1997)
[13] Chiron, S., A.A. Fernandez, and D. Barcelo, “Comparison of on-line Solid-Phase Disk Extraction to Liquid-Liquid Extraction for Monitoring Selected Pesticides in Environmental Waters”, Environ. Sci. Technol/27, 2352, (1998)
[14] Hinze, W.L. and E. Pramauro, “A Critical Review of Surfactant Mediated Phase Separation (Cloud Point Extraction)-Theory and Applications”, Crit. Rev. Anal. Chem., 24, 133-177, (1993)
[15] Quina, F.H. and W.L. Hinze, “Surfactant Mediated Cloud Point Extraction: An Environmentally Benign Alternative Separation Approach”, Ind. Eng. Chem. Res., 38, 4150, (1999)
[16] Paleologos, E.K., C.D. Stalikas, S.M. Tzouwara-Karayanni, and M.I. Karayannis, “Selective Speciation of Trace Chromium Through Micelle Mediated Preconcentration, Coupled with Micellar Flow Injection Analysis Spectrofluorimetry”, Anal. Chimica Acta 436, p. 49-57, (2001)
[17] Silva, M.F., L. Fernandez, R.A. Olsina, and D. Stacchiola, “Cloud Point Extraction, Preconcentration and Spectrophotometric Determination of erbium(III)-2-(3,5-dichloro-2-pyrydylazo)-5-dimethylaminophenol”, Anal. Chimica Acta 342, p. 229-238, (1997)
[18] Silva, M.F., L. Fernandez, and R.A. Olsina, “Monitoring the Elimination of gadolinium-based Pharmaceuticals. Cloud Point Preconcentration and Spectrophotometric Determination of Gd(III)-2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminophenol in Urine”, The Analyst, (1998)
[19] Wuilloud, G.M., et al., “Cloud Point Extraction of Vanadium in Parental Solutions Using a Nonionic Surfactant (PONPE 5.0) and Determination by Flow Injection-Inductively Coupled Plasma Optical Emission Spectrometry”, Talanta 58, p. 619-627, (2002)
[20] Materna, K., et al., “Removal of Phenols from Aqueous Streams by the Cloud Point Extraction Technique with Oxyethylated Methyl Dodecanoates as Surfactants”, Environ. Sci. Technol. 35, p.2341-2346, (2001)
[21] Komáromy-Hiller, G. and Wandruszka R.V., “Decontamination of Oil-Polluted Soil by Cloud Point Extraction”, Talanta 42, p. 83-88, (1995)
[22] Casero, I., et al., “An Acid Induced Phase Cloud Point Separation Approach Using Anionic Surfactants for the Extraction and Preconcentration of Organic Compounds”, Anal. Chem., 71(20), p. 4519-4526, (1999)
[23] Bai, D.S., et al., “A Novel Cloud Point Extraction Process for Preconcentrating Selected Polycyclic Aromatic Hydrocarbons in Aqueous Aolution”, Environ. Sci. Technol., 35(19), p. 3936-3940, (2001)
[24] Perry, R.H. and D. Green (editors), “Perry’s Chemical Engineering Handbook, 6th ed”, New York: McGraw-Hill, Chapter 15, (1984)
[25] Schott, H., “Effect of Inorganic Additives on Solutions of Nonionic Surfactants XIV. Effect of Chaotropic Anions on the Cloud Point of Octoxynol 9 (Triton X-100)”, J. Colloid Interface Sci., 189(1), p. 117-122, (1997)
[26] Koshy, L., A.H. Saiyad, and A.K. Rakshit, “The Effects of Various Foreign Substances on the Cloud Point of Triton X-100 and Triton X-114”, Colloid Polym. Sci., 274(6), p. 582-587, (1996)
[27] Schott, H., “Hydrophile-Lipophile Balance and Cloud Points of Nonionic Surfactants”, J. Pharm. Sci., 58(12), p. 1443-&, (1969)
[28] Iwanaga, T., M. Suzuki, and H. Kunieda, “Effect of Added Salts or Polyols on the Liquid Crystalline Structures of Polyoxyethylene-type Nonionic Surfactants”, Langmuir, 14(20), p. 5775-5781, (1998)
[29] Miyagishi, S., K. Okada, and T. Asakawa, “Salt Effect on Critical Micelle Concentrations of Nonionic Surfactants, N-acyl-N-methylglucoamides (MEGA-n)”, J. Colloid Interface Sci., 238(1), p. 91-95, (2001)
[30] Hung, K.C., and B.-H. Chen. “Application of L3 Sponge Phase in Extraction of Polycyclic Aromatic Hydrocarbons”, AIChE Journal 53(6), p. 1450-1459, (2007)
[31] Li, J.L. and B.-H. Chen, “Equilibrium Partition of Polycyclic Aromatic Hydrocarbons in a Cloud Point Extraction Process”, J. Colloid Interface Sci., 263(2), p. 625-632, (2003)
[32] Ferrer, R., J.L. Beltran, and J. Guiteras, “Use of Cloud Point Extraction Methodology for the Determination of PAHs Priority Pollutants in Water Samples by High-Performance Liquid Chromatography with Fluororesence Detection Wavelength Programming”, Anal. Chimica Acta, 330(2-3), p. 188-206, (1996)
[33] Cheng, H.F. and D.A. Sabatini, “Separation of Organic Compounds from Surfactant Solutions: A Review”, Sep. Sci. Technol., 42(3), p. 453-475, (2007)
[34] Das, C., S. DasGupta, and S. De, “Simulation Separation of Mixture of Metal Ions and Aromatic Alcohol Using Cross Flow Micellar-Enhanced Ultrafiltration and Recovery of Surfactant”, Sep. Sci. Technol., 43(1), p. 71-92, (2008)
[35] Boonyasuwat, S., et al., “Surfactant Recovery from Water Using a Multistage Foam Fractionator: Effect of Surfactant Type”, Sep. Sci. Technol., 44(7), p. 1544-1561, (2009)
[36] Senturk, H.B., et al., “Removal of Phenol from Aqueous Solutions by Adsorption onto Organomodified Tirebolu Bentonite: Equilibrium, Kinetic, and Thermodynamic Study”, J. Hazard. Mater., 172(1), p. 353-362, (2009)
[37] Ahn, C.K., et al., “Selective Adsorption of Phenanthrene Dissolved in Surfactant Solution Using Activated Carbon”, Chemosphere, 69(11), p. 1681-1688, (2007)
[38] Kungsanant, S., et al., “Recovery of Nonionic Surfactant from VOC-contaminated Coacervate Phase Solutions by co-current Vacuum Stripping: Effect of Surfactant Concentration, Temperature, and Solute Type”, Sep. Purif. Technol., 66(3), p. 510-516, (2009)
[39] Fetzer, J. C., “The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons”, Polycyclic Aromatic Compounds (New York: Wiley) 27: 143, (2000)
[40] Agency for Toxic Substances and Disease Registry, “Toxicological profile for polycyclic aromatic hydrocarbons (PAHs)”, Atlanta, GA, US Department of Health and Human Services, Public Health Services, (1994)
[41] Salager, J.L., “Surfactant Types and Uses”, Mérida-Venezuela, Version # 2, (2002)
[42] Rosen, M.J., “Surfactant and Interfacial Phenomena”, 2nd ed., John Wiley & Sons, New York, (1989)
[43] Smulders, E., et al., “Laundry Detergents”, Ulmann’s Encydopedia of Industrial Chemistry, (2007)
[44] McKenzie, D.A., “Nonionic Surfactants”, J. AM. OIL CHEMISTS’ SOC., 55, (1978)
[45] American Society for Testing and Materials, “Ethylene oxide content for polyethoxylated nonionic surfactants, D2959-95”, West Conshohocken, PA 19428, (2009)
[46] Siggia, S., A.C. Starke, Jr., J.J. Garis, Jr., C.R. Stahl, “Oxalkylene groups in glycols and glycol and polyglycol ethers and esters”, Anal. Chem., 30, 115-116, (1958)
[47] Siggia, S., J.G. Hanna, “Quantitative Organic Analysis via Functional Groups, 4th ed.”, Robert E. Krieger, Malabar, FL, (1988)
[48] Schmitt, T.M., “Analysis of Surfactants: 2nd edition revised and expanded”, Marcel Dekker: New York, (2001)
[49] Hennion, M.C., G.J.T. Tiddy, L. Waring, T. Bostock, and M.P. McDonald, “Phase Behavior of Polyoxyethylene Surfactant with Water”, J. Chem. Soc., Faraday Trans. I, 79, 975, (1983)
[50] Ahmed, F.E., “Analysis of Pesticides and Their Metabolites in Foods and Drinks”, Trends Anal. Chem. 20, p. 649, (2001)
[51] Rodríguez, I., M.P. Llompart, and R. Cela, “Solid-Phase Extraction of Phenols”, J. Chromatograph. A, 885, 291-304, (2000)
[52] Lores, M., M. Llompart, R. Gonzalez-Garcia, C. Gonzalez-Barreiro, R. Cela, “On-Fiber Photodegradation Studies of Polychlorinated Biphenyls Using SPME-GC-MS-MS: A Nee Approach”, Chemosphere 47, p. 607, (2002)
[53] Saitoh, T., and W.L. Hinze, “Use of Surfactant-Mediated Phase Separation (Cloud-Point Extraction) with Affinity Ligands for The Extraction of Hydrophilic Proteins”, Talanta, 42, 119, (1995)
[54] Heemke, O.P., T. Norbert, and B.W. Wenclawiak, “Comparison of ASE and SFE with Soxhlet, Sonification, and Methanolic Saponification Extraction for The Determination of Organic Micropollutants in Marine Particulate Matter”, Anal. Chem. 69, 2171, (1997)
[55] Fernández, A.E., Z.S. Ferrera, and J.J. Santana-Rodríguez, “Determination of Polychlorinated Biphenyls by Liquid Chromatography Following Cloud-Point Extraction”, Anal. Chem. Acta., 358, 145, (1998)
[56] Leo, A., C. Hansch, and D. Elkins, “Partition Coefficients and Their Uses”, Chem. Rev. 71 (6), p. 525-616, (1971)
[57] Ferrera, Z.S., C.P. Sanz, J.J. Santana-Rodríguez, “The Use of Micellar Systems in The Extraction and Preconcentration of Organic Pollutants in Environmental Samples”, Trends Anal. Chem., 23, 469, (2004)
[58] Van der Velde, E.G., M. Dietvorst, C.P. Swart, M.R. Ramlal, and P.R. Kootstra, “Optimization of Supercritical Fluid Extraction of Organochlorine Pesticides from Real Soil Samples”, J. Chromatogr. A 683, p. 167, (1994)
[59] Becnel, J.M., and K.M. Dooley, “Supercritical Fluid Extraction of Polycyclic Aromatic Hydrocarbon Mixtures from Contaminated Soils”, Ind. Eng. Chem. Res., 37, p. 584-594, (1998)
[60] Lang, Q.Y., F. Hunt, and C.M. Wai, “Supercritical Fluid Extraction of Polycyclic Aromatic Hydrocarbons from White Pine (Pinus strobus) Needles and Its Implications”, JEM, (2000)
[61] Owadt, S.B., and B. Johansson, “Independent Comparison of Soxhlet and Supercritical Fluid Extraction for The Determination of PCBs in an Industrial Soils”, Anal. Chem. 67, 2424, (1995)
[62] Fisher, J.A., M.J. Scarlett, and A.D. Stott, “Accelerated Solvent Extraction: An Evaluation for Screening of Soils for Selected U.S. EPA Semivolatile Organic Priority Pollutants”, Environ. Sci. Technol. 31, 4210, (1997)
[63] Zuloaga, O., N. Extebarria, L.A. Fernández, and J.M. Madariaga. Trends Anal. Chem. 17, p. 642, (1998)
[64] Wiberg, K., S. Sporring. P. Haglund, and E. Björglund, “Selective Pressurized Liquid Extraction of Polychlorinated Dibenzo-p-Dioxins, Dibenzofurans, and Dioxin-Like Polychlorinated Biphenyls from Food and Feed Samples”, J. Chromatogr A, 1138, p. 55-64, (2007)
[65] Antunes, P., et al., “Optimization of Pressurized Liquid Extraction (PLE) of Dioxin-Furans and Dioxin-Like PCBs from Environmental Samples”, Talanta 75, p. 916-925, (2008)
[66] Pastor, A., E. Vazquez, E. Ciscar, and M. Guardia, “Microwave-Assisted Extraction of Pyrethroid Insecticides from Soil”, Anal. Chem. Acta 344, (1997)
[67] López-Avila, V., R. Young, J. Benedicto, P. Ho, R. Kim, and W.F. Beckert, “Extraction of Organic Pollutants from Solid Samples Using Microwave Energy”, Anal. Chem. P. 2096, (1995)
[68] Onuska, F.I., and K.A. Terry, “Extraction of Pesticides from Sediments Using A Microwave Technique”, Chromatographia 36, p. 191, (1993)
[69] Pino, V., J.H. Ayala, A.M. Afoso, and V. González, “Micellar Microwave-Assisted Extraction Combined with Solid-Phase Microextraction for The Determination of Polycyclic Aromatic Hydrocarbons in A Certified Marine Sediment”, Anal. Chim. Acta 477, p. 81, (2003)
[70] Shiau, B.J., D.A. Sabatini, and J.H. Harwell, "Solubilization and Microemulsification of Chlorinated Solvents Using Direct Food Additive (Edible) Surfactants", Ground Water, 32(4), p. 561-569, (1994)
[71] Acosta, E., et al., "Formulating chlorinated hydrocarbon microemulsions using linker molecules", Environ. Sci. Technol., 36(21), p. 4618-4624, (2002)
[72] Hung, K.C., B.H. Chen, and L.E. Yu, "Cloud-point extraction of selected polycyclic aromatic hydrocarbons by nonionic surfactants", Sep. Purif. Technol., 57(1), p. 1-10, (2007)
[73] Bercaru, O., et al., “Accurate Quantification of PAHs in Water in The Presence of Dissolved Humic Acids Using Isotope Dillution Mass Spectrometry”, Anal. Bioanal. Chem., 384(5), p. 1207-1213, (2006)
[74] Frankewich, R.P. and W.L. Hinze, "Evaluation and Optimization of the Factors Affecting Nonionic Surfactant-Mediated Phase Separations", Anal. Chem., 66(7), p. 944-954, (1994)
[75] Santana, C.M., Z.S. Ferrera, and J.J.S. Rodriguez, "Use of non-ionic surfactant solutions for the extraction and preconcentration of phenolic compounds in water prior to their HPLC-UV detection", Analyst, 127(8), p. 1031-1037, (2002)
[76] Mahugo Santana, C., Z. Sosa Ferrera, and J.J. Santana Rodriguez, "Extraction and determination of phenolic derivatives in water samples by using polyoxyethylene surfactants and liquid chromatography with photodiode array detection", Journal of AOAC International, 87(1), p. 166-171, (2004)
[77] Iwashita, Y., and H. Tanaka, “Self-Organization in Phase Separation of A Lyotropic Liquid Crystal into Cellular, Network, and Droplet Morphologies”, (2006)
[78] Strey, R., et al., "Freeze-Fracture Electron-Microscopy of Dilute Lamellar and Anomalous Isotropic (L3) Phases", Langmuir, 6(11), p. 1635-1639, (1990)
[79] Tiddy, G.J.T., “Surfactant-Water Liquid Crystal Phases”, North Holland Publishing Company: Amsterdam, (1980)
[80] Israelachvili, J.N., D.J. Mitchell, and B.W. Ninham, "Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers", Journal of the Chemical Society-Faraday Transactions Ii, 72, p. 1525-1568, (1976)
[81] Strey, R., "Water-nonionic surfactant systems, and the effect of additives", Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 100(3), p. 182-189, (1996)
[82] Jonströmer, M., and R. Strey, “Nonionic Bilayers in Dilute Solutions: Effect of Additives”, (1992)
[83] Cheng, H.F., D.A. Sabatini, and T.C.G. Kibbey, “Solvent Extraction for Separating Micellar-Solubilized Contaminants and Nonionic Surfactants”, Environ. Sci. Technol., 35(14), p. 2995-3001, (2001)
[84] Lide, D.R. (Ed.), “CRC Handbook of Chemistry and Physics, 86th ed.”, CRC Press, Boca Raton, FL, (2005)
[85] Mackay, D. and W.Y. Shiu, “Aqueous solubility of polynuclear aromatic hydrocarbons”, J. Chem. Eng. Data 22, 399-402, (1977)
[86] Sutanto, H., “Recovery of Nonionic Surfactant after Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons”, National Cheng Kung University, Master Thesis, (2010)
[87] Hinze, W.L., “Applications of Cyclodextrins in Chromatographic Separations and Purification Methods”, Sep. Purif. Methods, 10, 159, (1981)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw