進階搜尋


下載電子全文  
系統識別號 U0026-2907201110242400
論文名稱(中文) 微管道迴路內熱泡驅動機制之實驗探討
論文名稱(英文) Experimental Studies of Thermal Bubble Driven Mechanism in a Microchannel Loop
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 99
學期 2
出版年 100
研究生(中文) 劉彥豪
研究生(英文) Yan-Hao Liu
學號 p46984326
學位類別 碩士
語文別 中文
論文頁數 126頁
口試委員 指導教授-呂宗行
口試委員-高騏
口試委員-康尚文
中文關鍵字 熱毛細力效應  微機電製程加工技術  微管道迴路 
英文關鍵字 hermal Capillary effect  MEMS Fabrication  Microchannel loop 
學科別分類
中文摘要 本研究利用熱毛細力效應(Thermocapillary effect)使熱泡於微管道迴路內產生移動,主要驅動方式是利用單一方波信號驅動微加熱器,使加熱器產生熱量傳至微管道內,並由內部的工作流體異丙醇(IPA)吸收,工作流體因吸收熱量後,經由液態沸騰產生過熱氣泡,當繼續輸入熱通量,熱汽泡將向上下游成長變大,並在加熱器上游設計汽泡閥,使熱泡成長過程中因微管道迴路中不同的流動阻力,造成熱泡不對稱的成長。在加熱期間,熱泡只沿著一個方向成長,當加熱週期結束時,利用致冷晶片(Thermoelectric Cooling Chip )與加熱器交互作用,於熱泡兩端產生溫度梯度,熱泡受到溫度梯度的影響,導致熱泡兩端產生溫度差,引起熱泡兩端介面的表面張力不平衡,而往成長端移動;當方波訊號驅動時,熱泡將會連續不斷生長並產生週期性的移動。在此實驗的結果發現到Vheater=5V、tH=4 sec、tC=16 sec、F=0.05Hz、Xcooler=-1000m時,熱泡移動效果最好,移動速度最高可達60.44 m/sec;此外實驗結果中發現,沿著微管道迴路的背景溫度對於熱泡移動的效能是一個非常重要的參數。
英文摘要 In this study, thermocapillary effect is applied to move thermal bubbles in a microchannel loop. By driving the heater with a square-wave signal, bubble nucleates and grows in a microchannel loop. During heating period, thermal bubble grows asymmetrically in one direction due to the different flow resistance design in the microchannel loop. By adjusting the distance between thermoelectric cooling chip and micro heater, a temperature gradient field is generated along the bottom wall of the thermal bubble. As soon as the heating pulse is turned off, an interesting phenomenon is found. Instead of bubble collapse, the temperature gradient field causes temperature difference and induces an unequal surface tension between two interfaces of the thermal bubble. Then, thermal bubble moves toward growing direction. Continuous bubble grows and moves periodically when square-wave pulsing signals are applied. In the experiments, it is found that the movement of bubble is remarkable when Vheater=5V, tH=4 sec, tC=16sec, F=0.05Hz, Xcooler=-1000m. The speed of thermal bubble movement can reach as high as 60.44m/sec. The experimental results also found the background temperature along the microchannel loop is the key control parameter of effectiveness of bubble’s movement. Numerical analysis is applied to verify the accuracy and reliability of the experimental results.
論文目次 中文摘要.................I
Abstract................III
誌謝.....................V
目錄.....................VI
表目錄...................IX
圖目錄...................X
符號說明.................XVIII
第一章 緒論...............1
1-1前言..................1
1-2文獻回顧...............2
1-3研究動機與目的..........4
第二章 晶片設計及原理.......11
2-1汽泡移動機制............11
2-2熱泡移動機制與物理模型理論分析.......12
2-2-1表面張力........................12
2-2-2物理模型理論分析.................13
2-3熱傳數值模擬分析...................15
2-3-1數值分物理模型介紹...............16
2-3-2數值模擬分析設定.................17
2-3-3實驗晶片背景溫度之方程式及邊界條件..............17
2-3-4二維暫態數值模擬分析所用之方程式及邊界條件.......18
2-4數值模擬之實驗晶片長度測試.......................19
2-5數值模擬方法對照測試............................20
2-6二維穩態實驗晶片背景溫度分析.....................21
2-7二維暫態實驗晶片表面溫度分析.....................21
2-8微加熱器原理及電阻值計算.........................22
2-9加熱器及微管道光罩設計...........................24
第三章 實驗晶片製作流程與實驗架設.....................49
3-1微加熱晶片與微流道晶片黃光微影製程.................49
3-2晶片清潔.......................................51
3-3微影製程.......................................51
3-4金屬薄膜沉積....................................52
3-5金屬薄膜剝離....................................53
3-6微流道製作......................................54
3-7 PDMS薄膜微管道製程..............................56
3-8晶片接合........................................56
3-9實驗儀器架設.....................................57
3-10實驗方法.......................................58
3-11實驗晶片測試....................................59
第四章 實驗結果與討論................................76
4-1封閉迴路內致冷晶片在不同Xcooler位置上等功率之實驗測試......76
4-1-1熱泡成核及成長週期....................................78
4-1-2熱泡長度急遽縮小週期..................................80
4-1-3熱泡長度達到平衡週期..................................80
4-1-4熱泡中心點與加熱器原點之間距離變化......................81
4-2封閉迴路內熱泡間交互作用.................................83
4-2-1第二個熱泡成核、生長及移動的變化分析....................84
4-2-2以數值模擬方式分析熱泡於不同循環中的溫度場...............85
4-2-3改變不同的冷卻週期(tC)對於熱泡移動的影響測試.............86
4-2-4改變不同的加熱週期(tH)對於熱泡移動的影響測試.............87
4-3封閉迴路與開放式迴路測試比較測試..........................88
第五章 結論與未來工作......................................121
5-1結論..................................................121
5-2未來研究方向...........................................122
參考文獻..................................................123
參考文獻 【1】 J. J. Cefa, D. A. Barrow, P. Woias, and E. Muller, “Integrated Chemical Analysis Microsystems in Space life Sciences Research”, Journal of Micromechanics and Microengineering, 4, pp. 172-185, 1994
【2】 M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnson, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated Structures for Integrated DNA Analysis”, Proceedings of the National Academy of Sciences of the United Stated of America, 93, 5556-5561, 1996
【3】 M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. N. Man, D. Jones, D. Heltsinger, C. H. Mastrangelo, and D. T. Burke, “An Integrated Nanoliter DNA Analysis Device”, Science, Vol. 282, pp. 484-487, 1998
【4】 高瑞鴻, 呂宗行, “Fe-PDMS製作之無動件閥微幫浦設計與操作”國立成功大學航空太空工程學系碩士論文, 2010.
【5】 J. H. Tsai and L. W. Lin,“A Thermal-bubble-Actuated Micronozzle-Diffuser Pump”, Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp. 665-671. December 2002
【6】 Y. Yokoyama, M. Takeda, T. Umemoto, T. Ogushi,“Thermal micro pumps for a loop-type microchannel”, Sensors and Actuators A: Phys. 111, pp. 123-128, 2004
【7】 S. H. Chiu and C. H. Liu,“An air-bubble-actuated micropump for on-chip blood transportation”, Lab on a Chip, 1524-1533, September, 2009
【8】 T. G. Kang and Y. H. Cho,“A Four-Bit Digital Microinjector Using Microheater Array for Adjusting the Ejected Droplet Volume”, Journal of Microelectromechanical Systems, Vol, 14, NO, 5, pp. 1031-1038, October, 2005
【9】 K. Pettigrew, J. Kirshberg, K. Yerkes, D. Trebotich and D. Liepmann, “Performance of MEMS based micro capillary pumped loop for chip-level temperature control”, The 14th IEEE International Conference on Micro Electro Mechanical Systems, 2001
【10】 D. S. Meng and C. J. Kim,“Micropumping by Directional Growth and Hydrophobic Venting of Bubbles”, Proceedings of IEEE MEMS, pp. 423-42, 2005
【11】 T. Jun and C. J. Kim,“Microscale pumping with traversing bubbles in microchannels”, Solid-State Sensor Actuator Workshop, pp. 144-147, 1996
【12】 N. O. Young, J. S. Goldstein, and M. J. Block,“The motion of bubble in a vertical temperature gradient”, Journal of Fluid Mech., Vol.6, pp. 350-356, 1959.
【13】 K. Takahashi, J. G. Weng, and C. L. Tien, “Marangoni effect in microbubble systems”, Microscale Thermophysical Engineering, Vol.3, pp.169-182, 1999.
【14】 呂宗行, “古老物理新應用-表面張力於微熱流系統應用”, 台灣化工工程學會會刊, 56卷4期Aug. , 2009
【15】 Timothy S. Sammarco and Mark A. Burns, “Thermocapillary pumping of Discrete Drops in Microfabricated Analysis Devices, ”AIChE Journal, Vol. 45, No. 2, Feb. 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw