進階搜尋


下載電子全文  
系統識別號 U0026-2907201017142000
論文名稱(中文) 基材軟硬度及表面形態對正常細胞與癌細胞移動的影響
論文名稱(英文) The Effect of Surface Morphology and Substrate Rigidity on Normal and Cancer Cells Migration
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 陳玟綺
研究生(英文) Wen-Chi Chen
電子信箱 haha880@hotmail.com
學號 p8697416
學位類別 碩士
語文別 英文
論文頁數 75頁
口試委員 指導教授-葉明龍
口試委員-李澤民
口試委員-林睿哲
口試委員-艾群
中文關鍵字 細胞移動  微機電製程  基材表面型態  基材軟硬度 
英文關鍵字 Cell migration  MEMS  Surface morphology  Substrate rigidity 
學科別分類
中文摘要 大多數的細胞都需要基底以利其進行貼附、移動、生長、分化等行為。細胞在進行這些行為時,會受到基底的軟硬度或表面形態所影響。而細胞移動的速率對癌細胞的移轉是很重要的因素。本研究探討使用軟硬程度不同的基材搭配上不同表面特定形態,對於細胞貼附之後的移動能力之影響。
本研究使用人類黑色素腫瘤細胞 (Human melanoma)及人類黑色素細胞(human epidermal melanocytes),以10:1及20:1兩種比例混合的矽酮(Silicon elastomer)及熟化劑矽酮樹脂溶液 (Silicon elastomer)調配出不同軟硬度的聚二甲基矽氧烷 (PDMS)為基底材料,並以材料試驗機 (MTS)量測PDMS的揚氏模數,使用微機電製程 (MEMS)技術翻模出不同的基材表面型態,包含平頂圓錐及長橫溝兩種,分別具有兩種不同線寬為1 μm及6 μm,與玻璃基材相對照。細胞於不同基材表面型態穩固貼附12小時後,連續觀察細胞位置6小時,使用Image Pro. Plus軟體做移動速率及方向分析計算。
以10:1及20:1兩種比例調配的PDMS其揚氏模數分別為3.04 ± 0.26及 1.44 ± 0.13 MPa,兩種細胞均會沿著與長橫溝平行的方向移動,且隨著線寬的增加而增加,在平頂圓柱及平的表面上則會無規則的排列與移動。人類黑色素腫瘤細胞隨長橫溝平行移動的比率,隨著線寬的減小而下降。人類黑色素腫瘤細胞貼附面積受平頂圓柱影響最為顯著,但人類黑色素細胞貼附面積卻不受基材軟硬度及表面形態所影響。
在所有基材上,人類黑色素細胞移動的速度均比人類黑色素腫瘤細胞移動的快。兩種細胞在玻璃基材上移動的最慢,在不同表面形態上,細胞在具有較軟的PDMS上移動的比較硬的PDMS快,且人類黑色素腫瘤細胞在較軟的PDMS所翻模出的6 μm平頂圓柱上移動的最快 (0.91 ± 0.06 μm/min),人類黑色素細胞則在較軟的PDMS所翻模出的1 μm長橫溝上移動的最快 (1.02 ± 0.11 μm/min)。
綜合所得的結果,此研究證實人類黑色素腫瘤細胞比人類黑色素細胞對基材軟硬度及表面形態是較為敏感的。
英文摘要 Most cells are anchorage dependent. They require a surface to attach in order to migrate, proliferate, and differentiate. It is known several chemical factors can dramatically affect those functions of cells. Nevertheless, physical factors like stiffness and surface morphology of the substrata are also thought to influence cell behaviors. The purpose of this study was to measure the cell migration under different stiffness and structure of the substrata.
Human melanoma cells (A2058) and human epidermal melanocytes (HEMn) were used for this study. The polydimethylsiloxane (PDMS) with ratios of silicon elastomer/curing agent concentration at 10:1 and 20:1 were fabricated for soft substrata. The Young’s modulus of PDMS substrata with different ratios were measured by material testing system (MTS). PDMS samples were made into five forms, including flat, 6 μm cones, 6 μm grooves, 1 μm cones and 1 μm grooves by standard micro-electro-mechanical-systems (MEMS). Glass dish was used as control substrate. After cells were seeded on glass, flat PDMS, flat-top cone, or long groove PDMS for 12 hours to establish stable attachment, the cell images were taken by optical microscopy every 5 minutes for 6 hours. The speed and direction of cell migration were calculated by the coordinate of each cell on the images.
The modulus for PDMS with a ratio of 10:1 and 20:1 measured by MTS were 3.04 ± 0.26 and 1.44 ± 0.13 MPa respectively. For both cell types, parallel migration along the pattern occurred on the groove surface and the directional migration increased with pattern line width; however, both cell types did not show any preferred migration orientation n the cones and flat substrata. The frequency of A2058 cells moving along the groove decreased with smaller line width. Flat-top cone was the best surface morphology to influence A2058 cell area. In contrast, the cell area of HEMn cells appeared uniform to variation in surface morphology and substrate rigidity.
The speeds of HEMn cells were almost faster on all substrata when compared to the speed of A2058 cells. The migration speeds of both cell types on glass were the lowest and significantly faster on soft PDMS when compared to the stiff PDMS for most types of patterning substrate. The highest speeds of A2058 and HEMn cells were 0.91 ± 0.06 and 1.02 ± 0.11 μm/min was obtained on the soft 6 μm cones and soft 1 μm grooves respectively.
In conclusion, this study demonstrated that A2058 cells were more sensitive to the changes of surface morphology and substrate rigidity than HEMn cells.
論文目次 ABSTRACT I
摘要 III
致謝 V
TABLE OF CONTENTS VI
LIST OF FIGURES IX
LIST OF TABLES XII
CHAPTER 1 INTRODUCTION 1
1.1 CELL MIGRATION 1
1.1.1 Migration process 2
1.1.2 The mechanism of cell migration 2
1.2 LITHOGRAPHY 5
1.3 POLYDIMETHLSILOXANE (PDMS) 6
1.4 THE VARIOUS FACTORS INFLUENCE CELL BEHAVIOR 7
1.4.1 Substrate rigidity 8
1.4.2 Surface morphology 10
1.4.3 The variance of different cell types 12
1.5 EXPERIMENTAL HYPOTHESIS 13
1.6 PURPOSE 14
1.7 FLOWCHART OF EXPERIMENT 15
CHAPTER 2 METHODOLOGY 18
2.1 MATERIALS AND INSTRUMENTS 18
2.2 CELL CULTURE 19
2.3 FABRICATION OF SILICON MOLD 20
2.4 FABRICATION OF MICROSTRUCTURED PDMS SUBSTRATES 21
2.5 MEASUREMENT OF YOUNG’S MODULUS OF PDMS 24
2.6 WATER CONTACT ANGLE MEASUREMENT 25
2.7 SEM/EDS ANALYSIS 26
2.8 TIME-LAPSE MICROSCOPY 26
2.9 ACCURACY OF THE SURFACE TOPOGRAPHY 28
2.10 EXAMINATION FOR CELL MORPHOLOGY 28
2.11 IMMUNOSTAING FOR ACTIN AND VINCULIN 28
2.12 IMAGE ANALYSIS AND STATISTICS 29
CHAPTER 3 RESULTS 30
3.1 PDMS MODULUS 30
3.2 SURFACE CHARACTERIZATION 31
3.3 SEM COMBINED WITH EDS ANALYSIS OF THE COLLAGEN COATING 32
3.4 ACCURACY OF SURFACE MORPHOLOGY 34
3.5 CELL MORPHOLOGY 36
3.6 CELL SPREADING AREA 40
3.7 ORGANIZATION AND ALIGNMENT OF CYTOSKELETON AND FOCAL ADHESIONS (FAS) 44
3.8 MIGRATION DIRECTION 49
3.9 MIGRATION SPEED 52
CHAPTER 4 DISCUSSION 58
4.1 CELL ALIGNMENT 58
4.1.1 Effect of line width on cell alignment 58
4.1.2 Effect of line depth on cell alignment 59
4.2 CELL SPREADING AREA 59
4.3 CELL MIGRATION ANGLE 60
4.3.1 Effect of line width on cell migration direction 60
4.3.2 Cell shape may be a key factor for cell migration direction 61
4.3.3 Effect of line depth on cell migration direction 61
4.4 CELL MIGRATION SPEED 62
4.4.1 Effect of substrate rigidity on cell speed 62
4.4.2 Effect of the time cell seeded on the substrate 62
4.4.3 Effect of cell area on cell speed 63
4.4.4 Effect of line width combine with cell shape on cell speed 64
4.4.5 Effect of different traction force in both cell types on cell speed 65
4.5 EXPERIMENTAL LIMITATIONS 67
4.6 FUTURE PROSPECTS 67
CHAPTER 5 CONCLUSIONS 68
REFERENCES 70
CURRICULUM VITAE 74
參考文獻 Andersson, A. S., P. Olsson, et al. (2003). "The effects of continuous and discontinuous groove edges on cell shape and alignment." Exp Cell Res 288(1): 177-88.
Barkefors, I., S. Le Jan, et al. (2008). "Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis." J Biol Chem 283(20): 13905-12.
Berry, C. C., G. Campbell, et al. (2004). "The influence of microscale topography on fibroblast attachment and motility." Biomaterials 25(26): 5781-8.
Biela, S. A., Y. Su, et al. (2009). "Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range." Acta Biomater 5(7): 2460-6.
Blader, I. J., I. D. Manger, et al. (2001). "Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells." J Biol Chem 276(26): 24223-31.
Brunette, D. M. (1986). "Spreading and orientation of epithelial cells on grooved substrata." Exp Cell Res 167(1): 203-17.
Cavalcanti-Adam, E. A., T. Volberg, et al. (2007). "Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands." Biophys J 92(8): 2964-74.
Chang, S. I. and J. B. Yoon (2004). "Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method." Opt Express 12(25): 6366-71.
Charest, J. L., A. J. Garcia, et al. (2007). "Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries." Biomaterials 28(13): 2202-10.
Chen, C.-C., P. C.-H. Hsieh, et al. (2009). "The Influence of Surface Morphology and Stiffness of the Substrata on Cell Motility." Mater Let.
Choi, C. H., S. H. Hagvall, et al. (2007). "Cell interaction with three-dimensional sharp-tip nanotopography." Biomaterials 28(9): 1672-9.
Curtis, A. and C. Wilkinson (1997). "Topographical control of cells." Biomaterials 18(24): 1573-83.
Curtis, A. S., B. Casey, et al. (2001). "Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important?" Biophys Chem 94(3): 275-83.
Dalton, B. A., X. F. Walboomers, et al. (2001). "Modulation of epithelial tissue and cell migration by microgrooves." J Biomed Mater Res 56(2): 195-207.
Discher, D. E., P. Janmey, et al. (2005). "Tissue cells feel and respond to the stiffness of their substrate." Science 310(5751): 1139-43.
Doyle, A. D., F. W. Wang, et al. (2009). "One-dimensional topography underlies three-dimensional fibrillar cell migration." J Cell Biol 184(4): 481-90.
Dunn, G. A. and A. F. Brown (1986). "Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation." J Cell Sci 83: 313-40.
Fournier, M. F., R. Sauser, et al. (2010). "Force transmission in migrating cells." J Cell Biol 188(2): 287-97.
Frey, M. T., I. Y. Tsai, et al. (2006). "Cellular responses to substrate topography: role of myosin II and focal adhesion kinase." Biophys J 90(10): 3774-82.
Fuard, D., T. Tzvetkova-Chevolleau, et al. (2008). "Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility." Microelectronic Engineering 85: 1289–1293.
Galbraith, C. G., K. M. Yamada, et al. (2007). "Polymerizing actin fibers position integrins primed to probe for adhesion sites." Science 315(5814): 992-5.
Ghibaudo, M., L. Trichet, et al. (2009). "Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration." Biophys J 97(1): 357-68.
Giancotti, F. G. and E. Ruoslahti (1999). "Integrin signaling." Science 285(5430): 1028-32.
Gomez-Sjoberg, R., A. A. Leyrat, et al. (2007). "Versatile, fully automated, microfluidic cell culture system." Anal Chem 79(22): 8557-63.
Goto, M., T. Tsukahara, et al. (2008). "Micro- and nanometer-scale patterned surface in a microchannel for cell culture in microfluidic devices." Anal Bioanal Chem 390(3): 817-23.
Gray, D. S., J. Tien, et al. (2003). "Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus." J Biomed Mater Res A 66(3): 605-14.
Horwitz, R. and D. Webb (2003). "Cell migration." Curr Biol 13(19): R756-9.
Ilina, O. and P. Friedl (2009). "Mechanisms of collective cell migration at a glance." J Cell Sci 122(Pt 18): 3203-8.
Irimia, D., S. Y. Liu, et al. (2006). "Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients." Lab Chip 6(2): 191-8.
Kaiser, J. P. and A. Bruinink (2004). "Investigating cell-material interactions by monitoring and analysing cell migration." J Mater Sci Mater Med 15(4): 429-35.
Kaiser, J. P., A. Reinmann, et al. (2006). "The effect of topographic characteristics on cell migration velocity." Biomaterials 27(30): 5230-41.
Kurosaka, S. and A. Kashina (2008). "Cell biology of embryonic migration." Birth Defects Res C Embryo Today 84(2): 102-22.
Lauffenburger, D. A. and A. F. Horwitz (1996). "Cell migration: a physically integrated molecular process." Cell 84(3): 359-69.
Lenhert, S., M. B. Meier, et al. (2005). "Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography." Biomaterials 26(5): 563-70.
Li, Q. S., G. Y. Lee, et al. (2008). "AFM indentation study of breast cancer cells." Biochem Biophys Res Commun 374(4): 609-13.
Li, S., S. Bhatia, et al. (2001). "Effects of morphological patterning on endothelial cell migration." Biorheology 38(2-3): 101-8.
Li, S., J. L. Guan, et al. (2005). "Biochemistry and biomechanics of cell motility." Annu Rev Biomed Eng 7: 105-50.
Liu, K., Y. Tian, et al. (2009). "Characterization of PDMS-modified glass from cast-and-peel fabrication." Talanta 79(2): 333-8.
Liu, W. F. and C. S. Chen (2007). "Cellular and multicellular form and function." Adv Drug Deliv Rev 59(13): 1319-28.
Lo, C. M., H. B. Wang, et al. (2000). "Cell movement is guided by the rigidity of the substrate." Biophys J 79(1): 144-52.
Loesberg, W. A., J. te Riet, et al. (2007). "The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion." Biomaterials 28(27): 3944-51.
Matsuda, T. and T. Sugawara (1996). "Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces." Journal of Biomedical Materials Research 32(2): 165-173.
Mosadegh, B., W. Saadi, et al. (2008). "Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients." Biotechnol Bioeng 100(6): 1205-13.
Nerem, R. M. (2003). "Tissue engineering: confronting the transplantation crisis." Adv Exp Med Biol 534: 1-9.
Oakes, P. W., D. C. Patel, et al. (2009). "Neutrophil morphology and migration are affected by substrate elasticity." Blood 114(7): 1387-95.
Oliver, T., M. Dembo, et al. (1999). "Separation of propulsive and adhesive traction stresses in locomoting keratocytes." J Cell Biol 145(3): 589-604.
Pelham, R. J., Jr. and Y. L. Wang (1998). "Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate." Biol Bull 194(3): 348-9; discussion 349-50.
Puklin-Faucher, E. and M. P. Sheetz (2009). "The mechanical integrin cycle." J Cell Sci 122(Pt 2): 179-86.
Raghavan, S. and C. S. Chen (2004). "Micropatterned Environments in Cell Biology." Advanced Materials 16: 15.
Saadi, W., S. J. Wang, et al. (2006). "A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis." Biomed Microdevices 8(2): 109-18.
Salmenpera, P., E. Kankuri, et al. (2008). "Formation and activation of fibroblast spheroids depend on fibronectin-integrin interaction." Exp Cell Res 314(19): 3444-52.
Teixeira, A. I., G. A. Abrams, et al. (2003). "Epithelial contact guidance on well-defined micro- and nanostructured substrates." J Cell Sci 116(Pt 10): 1881-92.
Teixeira, A. I., G. A. McKie, et al. (2006). "The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography." Biomaterials 27(21): 3945-54.
Tilghman, R. W., J. K. Slack-Davis, et al. (2005). "Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells." J Cell Sci 118(Pt 12): 2613-23.
Tzvetkova-Chevolleau, T., A. Stephanou, et al. (2008). "The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure." Biomaterials 29(10): 1541-51.
Uttayarat, P., M. Chen, et al. (2008). "Microtopography and flow modulate the direction of endothelial cell migration." Am J Physiol Heart Circ Physiol 294(2): H1027-35.
Uttayarat, P., G. K. Toworfe, et al. (2005). "Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions." J Biomed Mater Res A 75(3): 668-80.
Webb, K., V. Hlady, et al. (2000). "Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces." J Biomed Mater Res 49(3): 362-8.
Yim, E. K., R. M. Reano, et al. (2005). "Nanopattern-induced changes in morphology and motility of smooth muscle cells." Biomaterials 26(26): 5405-13.
Zajac, M., B. Dacanay, et al. (2008). "Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape." Biophys J 94(10): 3810-23.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw