進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2906202001130400
論文名稱(中文) 大型都市廢棄物焚化廠起爐排放持久性有機污染物之減量策略研究
論文名稱(英文) Control strategies of persistent organic pollutants in municipal solid waste incinerators during startup procedure
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 李冠賢
研究生(英文) Kuan-Hsien Li
學號 P56061219
學位類別 碩士
語文別 英文
論文頁數 198頁
口試委員 指導教授-吳義林
口試委員-王琳麒
口試委員-林龍富
口試委員-郭益銘
中文關鍵字 持久性有機污染物  冷起爐  大型都市廢棄物焚化爐  最佳可行控制技術 
英文關鍵字 POPs  Cold start-up  MSWIs  Best Available Control Technology 
學科別分類
中文摘要 為瞭解及解決大型都市垃圾焚化爐起爐期間高濃度持久性有機污染物(POPs)之生成與排放問題,本研究將進行國內大型都市垃圾焚化爐起爐狀況之盤查,包括瞭解各焚化爐歷年起爐之次數及起爐原因,並將目前各焚化爐操作業者起爐時所採行之各項操作參數及程序進行收集與分析。此外,將進行採用現行起爐操作參數(未改善前)與採行控制策略(改善後)之焚化爐起爐期間煙道廢氣排放持久性有機污染物之採樣分析,並評估所採行之減量措施對起爐排放持久性有機污染物之減量成效。本研究結論如下: 106-107兩年間21座焚化廠共總共起停爐535次,以平均每年起爐次數來看,以每爐每年起爐3-4次之比例最高,但亦有焚化爐一爐一年起爐次數高達28次之多。而造成非計畫性停爐之最主要原因為破管,其佔所有非計畫性停爐原因之57%,且全台各焚化爐皆有破管造成停爐之現象。為減少破管之發生可由降低進廠廢棄物熱值過高,並更換防腐蝕管材材料及採用防腐塗層著手,以降低因破管導致之非計畫性起停爐次數。問卷結果顯示起爐期間有無繞流約各佔一半,廢氣在未通過袋式集塵器下會有高量POPs排放現象,故減少焚化爐起爐期間採用旁管繞流對POPs減量將有很大助益。
以氯化POPs來看,起爐期間當燃燒室溫度低於200C時,因溫度低於POPs生成溫度區間,故廢氣中氯化POPs濃度較低。而當燃燒室溫度介於200C - 400C時,因de novo生成機制之影響,廢氣中氯化POPs濃度會隨時間遞增。而當廢棄物投料時,理應會因不完全燃燒而導致氯化POPs濃度升高,但因此時廢氣會因關閉繞流而通過袋式集塵器並噴注活性碳,故廢氣中氯化POPs濃度反而濃度下降。起爐後期因燃燒溫度高且穩定,廢氣中氯化POPs濃度會隨時間而下降,但因受記憶效應影響,其濃度仍高於平時操作時濃度及法規標準值。起爐初期溴化POPs濃度趨勢與氯化POPs趨勢不同,在燃燒室溫度<200C時,因廢棄物進料中含有PBDD/Fs、PBDEs物質未被完全燃燒破壞而熱脫附致有有最高的濃度排放。而後續起爐階段溴化POPs排放趨勢與氯化POPs相似,顯示PBDD/Fs與PBDEs亦會受到de novo生成機制影響而生成。
研究X、Y兩廠繞流排放之影響,結果顯示繞流排放之POPs比例約占起爐全程50~90%,可見避免繞流排放對降低起爐期間整體排放量有相當助益。本研究所提大型都市廢棄物焚化爐起爐POPs排放之減量措施可分為降低持久性有機污染物生成之潛勢(積灰加強清除、降低持溫至180℃與加速爐溫通過戴奧辛生成區間)及空氣污染防制設備操作參數改變(提早噴注活性碳與全程通過袋式集塵器)兩大類。各廠採行減量措施後,起爐期間PCDD/Fs最高濃度(3.48、3.20、0.552與0.424 ng WHO-TEQ/Nm3) 相較於過去文獻中PCDD/Fs最高濃度可高達250~335 ng I-TEQ/Nm3已大幅降低。而採行減量措施後起爐期間PCDD/Fs排放量(0.256 mg WHO-TEQ) 相較於過去文獻中PCDD/Fs最高排放量可高達72.3~132 mg WHO-TEQ亦大幅降低。最後,本研究所提焚化爐起爐POPs排放之減量措施於現行之焚化廠進行,所採行減量措施實際可用,不須更動硬體設施亦不影響操作成本。另本研究之焚化廠其操作與空氣污染防制設備與國內其他焚化廠相似,故未來可將本研究所提焚化爐起爐POPs排放減量措施推廣於其他焚化廠。
英文摘要 In this study, we conducted a questionnaire to understand the reasons for non-planned start-ups and operation parameters during start-ups of municipal solid waste incinerators (MSWIs) in Taiwan. Besides, the stack flue gas was sampled during start-up and analyzed for POP concentrations and the effect of adopting a control strategy to reduce the extreme POP concentrations during start-up.
The results of the questionnaire were as follows: From 2018-2019, 21 MSWIs had a total of 535 start-ups and shutdowns. In terms of the average number of annual times, the highest rate was 3-4 times per year. However, one of the MSWIs had as much as 28 start-ups and shutdowns in a year. The main reason for the non-planned shutdowns was broken pipes, which accounted for 57% of all non-planned shutdowns. The strategy to reduce this occurrence of broken pipes includes reducing the calorific value of waste entering the MSWI, replacing the pipes with anti-corrosion ones, and using anti-corrosion coatings. The questionnaire results also showed that approximately half of the MSWIs use a flue gas bypass during the start-up process when the flue gas has high POP concentration before it passes through the bag filter. Therefore, reducing the use of flue gas bypass flow around the incinerator during the start-up will greatly help the reduction of POPs.
The concentration of chlorinated POPs in the flue gas was low when the combustion chamber's temperature was lower than 200 °C. When the combustion chamber temperature was between 200-400 °C, the concentration increased with time due to de novo synthesis. The concentration is supposed to increase during the waste feeding due to incomplete combustion. However, the flue gas passed through the bag filter, and activated carbon was injected, so the chlorinated POP concentrations in the flue gas decreased. The concentrations further decreased due to the high and stable combustion temperatures. However, the concentrations were still higher than the normal operation and regulatory standards because of memory effects. On the other hand, the brominated POPs concentration trend was different from the chlorinated POPs. The concentrations were highest when the combustion chamber temperature was lower than 200 °C. This observation was because the precursors of PBDD/Fs and PBDEs were not destroyed due to incomplete combustion. The other emission trends of brominated POPs were similar to chlorinated POPs, which indicated that PBDD/Fs and PBDEs were also affected by de novo synthesis.
This study also conducted the impact of flue gas bypass emissions from the MSWI-X and MSWI-Y. The results showed that POP emissions by using the bypass accounted for approximately 50~90% of the incinerator's whole process. Avoiding using the flue gas bypass can reduce POP emissions during the start-up process. The control strategies of MSWIs during start-up process can be divided into the potential to reduce the generation of POPs (cleaning the ash accumulation in the combustion chamber, reducing the holding temperature to 180 °C and accelerating the furnace temperature through the POP formation temperature interval) and change the operating parameters of air pollution control devices (injecting activated carbon early and not bypassing the bag filter in the whole operation process). Compared to PCDD/F emission reported in other papers (72.3~132 mg WHO-TEQ), the PCDD/F emission quantity during the start-up of the MSWIs was reduced to 0.256 mg WHO-TEQ after adopting the control strategies in this study. Finally, the control strategies do not require modifications to existing air pollution control devices (APCDs), and therefore, there is no influence on operational costs. They can also be adopted by other MSWIs.
論文目次 摘要 .................................................................................................................... I Abstract ........................................................................................................... III
誌謝 .................................................................................................................. V
目錄 ................................................................................................................. VI
表目錄 .............................................................................................................. X
圖目錄 .......................................................................................................... XIV
Chapter 1 Introduction ...................................................................................... 1
1.1Background .................................................................................................. 1
1.2 Objectives .................................................................................................... 4
Chapter 2 Literatures Review ............................................................................ 5
2.1 Taiwan’s MSWIs ......................................................................................... 5
2.2 Introduction of PCDD/Fs ............................................................................ 7
2.2.1 Structure and Nomenclature of PCDD/Fs ................................ ............................ 7
2.2.2 Physico-chemical Properties of PCDD/Fs ................................ ............................ 8
2.2.3 Toxicity of PCDD/Fs ................................ ................................ ............................ 8
2.2.4 Emission sources of PCDD/Fs ................................ ................................ ............. 9
2.3 Introduction of PCBs ................................................................................. 10
2.3.1 Structure and Physico-chemical Properties of PCBs ................................ .......... 10
2.3.2 Toxicity of PCBs................................ ................................ ................................ . 10
2.3.3 Emission sources of PCBs ................................ ................................ .................. 11
2.4 Introduction of PCDEs .............................................................................. 12
2.4.1 Structure and Physico-chemical Properties of PCDEs ................................ ....... 12
2.4.2 Toxicity of PCDEs ................................ ................................ .............................. 13
2.4.3 Emission sources of PCDEs ................................ ................................ ............... 13
2.5 Introduction of PBDD/Fs .......................................................................... 15
2.5.1 Physico-chemical Properties of PBDD/Fs ................................ .......................... 15
2.5.2 Toxicity of PBDD/Fs ................................ ................................ .......................... 15
2.5.3 Emission sources of PBDD/Fs ................................ ................................ ........... 16
2.6 Introduction of PBBs ................................................................................. 17
2.6.1 Structure and Physico-chemical Properties of PBBs ................................ .......... 17
2.6.2 Toxicity of PBBs................................ ................................ ................................ . 17
2.6.3 Emission sources of PBBs ................................ ................................ .................. 18
2.7 Introduction of PBDEs .............................................................................. 19
2.7.1 Physico-chemical Properties of PBDEs ................................ ............................. 19
2.7.2 Toxicity of PBDEs ................................ ................................ .............................. 21
2.7.3 Emission sources of PBDEs ................................ ................................ ............... 21
2.8 Generation mechanism of POPs in MSWIs systems ................................ 22
2.9 Emisson POPs during MSWIs cold startup Operations ............................ 24
2.9.1 Taiwan’s MSWIs ................................ ................................ ................................ 24
2.9.2 Other country’s MSWIs ................................ ................................ ...................... 26
2.10 Control of POPs emissions ...................................................................... 28
Chapter 3 Material and Method ...................................................................... 31
3.1 Research flow chart ................................................................................... 31
3.2 POPs control strategy for MSWIs during start-up process ....................... 33
3.2.1 MSWI-X ................................ ................................ ................................ ............. 33
3.2.2 MSWI-Y ................................ ................................ ................................ ............. 35
3.2.3 MSWI-Z ................................ ................................ ................................ ............. 36
3.3 Sampling Plan ........................................................................................... 37
3.2.1 Operating parameters of MSWIs-X ................................ ................................ .... 37
3.2.2 Operating parameters of MSWI-Y ................................ ................................ ..... 44
3.2.3 Operating parameters of MSWI-Z ................................ ................................ ...... 50
3.4 Sampling process and analysis of POPs ................................................... 53
Chapter 4 Result and Discussion ..................................................................... 57
4.1 Questionnaire of MSWIs ........................................................................... 57
4.1.1 Results of the MSWIs star-up condition ................................ ............................. 57
4.1.2 Improvement measures to prevent non-planned shut down by tube broken ...... 61
4.2 POPs concentrations and congener profiles in flue gas of MSWIs during start up Procedure ............................................................................................ 64
4.2.1 POPs Concentrations in the flue gases during start-up process.......................... 64
4.2.1.1 X-1 ................................ ................................ ................................ ................... 64
4.2.1.2 X-2 ................................ ................................ ................................ ................... 67
4.2.1.3 X-3 ................................ ................................ ................................ ................... 70
4.2.1.4 Y-1................................ ................................ ................................ .................... 73
4.2.1.5 Y-2................................ ................................ ................................ .................... 76
4.2.1.6 Z-1 ................................ ................................ ................................ ................... 79
4.2 Characteristics of POPs emissions from flue Gas During Start-up .......... 82
4.2.1 Chlorinated POPs concentration trend ................................ ............................... 82
4.2.2 Brominated POPs concentration trends ................................ .............................. 83
4.3 Control strategy of POPs emission during start-up ................................... 85
4.3.1 Reducing the POPs formation potential ................................ ............................. 85
4.3.2 Change the operating parameters of APCDs ................................ ...................... 90
4.4 Impact of control strategy ......................................................................... 94
4.4.1 Emission control of POPs during startup ................................ ........................... 94
4.4.2 Impact of control strategy on POPs emissions during start-up .......................... 97
Chapter 5 Conclusion and Suggestion .......................................................... 104
5.1 Conclusion ............................................................................................... 104
5.2 Suggestion ............................................................................................... 106
References ..................................................................................................... 107
Appendix ....................................................................................................... 112
X-1 ................................................................................................................. 113
X-2 ................................................................................................................. 118
X-3 ................................................................................................................. 123
Y-1 ................................................................................................................. 128
Y-2 ................................................................................................................. 133
Z-1 ................................................................................................................. 138
POPs congener profiles in the flue gases during start-up process ................ 143
POPs congener profiles of X-1 ..................................................................... 143
POPs congener profiles of X-2 ..................................................................... 149
POPs congener profiles of X-3 ..................................................................... 155
POPs congener profiles of Y-1 ..................................................................... 161
POPs congener profiles of Y-2 ..................................................................... 167
POPs congener profiles of Z-1 ...................................................................... 173
參考文獻 Altarawneh, M., Dlugogorski, B. Z., Kennedy, E. M., &Mackie, J. C. (2009). Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in Energy and Combustion Science, 35(3), 245–274. https://doi.org/10.1016/j.pecs.2008.12.001
Becker, M., Phillips, T., &Safe, S. (1991). polychlorinated diphenyl ethers - A review. 33, 189–200.
Chang, M. B., &Lin, J. J. (2001). Memory effect on the dioxin emissions from municipal waste incinerator in Taiwan. Chemosphere, 45(8), 1151–1157. https://doi.org/10.1016/S0045-6535(00)00571-3
Chao, H.-R., Wang, S.-L., Lin, L.-Y., Lee, W.-J., &Päpke, O. (2007). Placental transfer of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in Taiwanese mothers in relation to menstrual cycle characteristics. Food and Chemical Toxicology, 45(2), 259–265. https://doi.org/10.1016/J.FCT.2006.07.032
Chen, T., Yan, J. H., Lu, S. Y., Li, X. D., Gu, Y. L., Dai, H. F., Ni, M. J., &Cen, K. F. (2008). Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in china. Journal of Hazardous Materials, 150(3), 510–514. https://doi.org/10.1016/j.jhazmat.2007.04.131
Choi, H., Al-Abed, S. R., Agarwal, S., &Dionysiou, D. D. (2008). Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials, 20(11), 3649–3655. https://doi.org/10.1021/cm8003613
D’Silva, K., Fernandes, A., &Rose, M. (2004). Brominated Organic Micropollutants - Igniting the Flame Retardant Issue. Critical Reviews in Environmental Science and Technology, 34(2), 141–207. https://doi.org/10.1080/10643380490430672
El-Shahawi, M. S., Hamza, A., Bashammakh, A. S., &Al-Saggaf, W. T. (2010). An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta, 80(5), 1587–1597. https://doi.org/10.1016/J.TALANTA.2009.09.055
Fitzgerald, E. F., Belanger, E. E., Gomez, M. I., Hwang, S. an, Jansing, R. L., &Hicks, H. E. (2007). Environmental exposures to polychlorinated biphenyls (PCBs) among older residents of upper Hudson River communities. Environmental Research, 104(3), 352–360. https://doi.org/10.1016/j.envres.2007.01.010
Gass, H. C., Luder, K., & Wilken, M. (2002). PCDD/F-emissions during cold start-up and shut-down of a municipal waste incinerator. Organohalogen compounds, 56, 193-196.
Guo, C. J., Wang, M. S., Lin, S. L., Mi, H. H., Wang, L. C., &Chang-Chien, G. P. (2014). Emissions of PCDD/Fs and PCBs during the cold start-up of municipal solid waste incinerators. Aerosol and Air Quality Research, 14(6), 1593–1604. https://doi.org/10.4209/aaqr.2014.06.0118
Kakuta, Y., Matsuto, T., Tojo, Y., &Tomikawa, H. (2007). Characterization of residual carbon influencing on de novo synthesis of PCDD/Fs in MSWI fly ash. Chemosphere, 68(5), 880–886. https://doi.org/10.1016/j.chemosphere.2007.02.017
Kim, E. Y., Kim, M. S., Lee, J. C., &Pandey, B. D. (2011). Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. Journal of Hazardous Materials, 198, 206–215. https://doi.org/10.1016/j.jhazmat.2011.10.034
Knobeloch, L., Turyk, M., Imm, P., Schrank, C., &Anderson, H. (2009). Temporal changes in PCB and DDE levels among a cohort of frequent and infrequent consumers of Great Lakes sportfish. Environmental Research, 109(1), 66–72. https://doi.org/10.1016/j.envres.2008.08.010
Koistinen, J., Koivusaari, J. B., Nuuja, I., Paasivirta, J., Box, P. O., Vaasa, F.-, Cc, C., &Jyvaskylti, F.-. (1995). PCDEs, PCBs, PCDDs and PCDFs in blackguillemotsand white - tailed sea eaglesfrom the baltic sea environment . Three breast muscles of eagles were analyzed and had different concentrations and patterns. 30(9), 1671–1684.
Kurz, J., &Ballschmiter, K. (1999). Vapour pressures, aqueous solubilities, Henry’s law constants, partition coefficients between gas/water (K(gw)), n-octanol/water (K(ow)) and gas/n-octanol (K(go)) of 106 polychlorinated diphenyl ethers (PCDE). Chemosphere, 38(3), 573–586. https://doi.org/10.1016/S0045-6535(98)00212-4
Lohmann, R., &Jones, K. C. (1998). Dioxins and furans in air and deposition: A review of levels, behaviour and processes. Science of the Total Environment, 219(1), 53–81. https://doi.org/10.1016/S0048-9697(98)00237-X
Löthgren, C. J., &VanBavel, B. (2005). Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility. Chemosphere, 61(3), 405–412. https://doi.org/10.1016/j.chemosphere.2005.02.015
Lyytikäinen, M., Hirva, P., Minkkinen, P., Hämäläinen, H., Rantalainen, A. L., Mikkelson, P., Paasivirta, J., &Kukkonen, J. V. K. (2003). Bioavailability of sediment-associated PCDD/Fs and PCDEs: Relative importance of contaminant and sediment characteristics and biological factors. Environmental Science and Technology, 37(17), 3926–3934. https://doi.org/10.1021/es034151o
Mari, M., Nadal, M., Schuhmacher, M., &Domingo, J. L. (2008). Monitoring PCDD/Fs, PCBs and metals in the ambient air of an industrial area of Catalonia, Spain. Chemosphere, 73(6), 990–998. https://doi.org/10.1016/j.chemosphere.2008.06.025
McKay, G. (2002). Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chemical Engineering Journal, 86(3), 343–368. https://doi.org/10.1016/S1385-8947(01)00228-5
Neuer-Etscheidt, K., Nordsieck, H. O., Liu, Y., Kettrup, A., &Zimmermann, R. (2006). PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut-down processes. Environmental Science and Technology, 40(1), 342–349. https://doi.org/10.1021/es050744i
Nevalalnen, T., Koistinen, J., &Nurmela, P. (1994). Synthesis, Structure Verification, and Chromatographic Relative Retention Times for Polychlorinated Diphenyl Ethers. Environmental Science and Technology, 28(7), 1341–1347. https://doi.org/10.1021/es00056a024
Norström, K., Czub, G., McLachlan, M. S., Hu, D., Thorne, P. S., &Hornbuckle, K. C. (2010). External exposure and bioaccumulation of PCBs in humans living in a contaminated urban environment. Environment International, 36(8), 855–861. https://doi.org/10.1016/j.envint.2009.03.005
Sam-Cwan, K., Hwan, J. S., Il-Rok, J., Ki-Hun, K., Myung-Hee, K., Jae-Hyung, K., Jun-Heung, Y., Seung-Jin, K., Jae-Cheon, Y., &Dong-Hee, J. (2001). Removal efficiencies of PCDDs/PCDFs by air pollution control devices in municipal solid waste incinerators. Chemosphere, 43(4–7), 773–776. https://doi.org/10.1016/S0045-6535(00)00432-X
Schenker, U., Soltermann, F., Scheringer, M., &Hungerbühler, K. (2008). Modeling the environmental fate of polybrominated diphenyl ethers (PBDEs): The importance of photolysis for the formation of lighter PBDEs. Environmental Science and Technology, 42(24), 9244–9249. https://doi.org/10.1021/es801042n
Sinkkonen, S., &Co, K. (1996). Formation of Chloroaromatics of Stack Filter At a Metal Reclamation in Their Removal and Efficiency. 32(1), 99–106.
Sjödin, A., Päpke, O., McGahee, E., Focant, J. F., Jones, R. S., Pless-Mulloli, T., Toms, L. M. L., Herrmann, T., Müller, J., Needham, L. L., &Patterson, D. G. (2008). Concentration of polybrominated diphenyl ethers (PBDEs) in household dust from various countries. Chemosphere, 73(1 SUPPL.), 131–136. https://doi.org/10.1016/j.chemosphere.2007.08.075
Sofuoglu, S. C., Sofuoglu, A., Holsen, T. M., Alexander, C. M., &Pagano, J. J. (2013). Atmospheric concentrations and potential sources of PCBs, PBDEs, and pesticides to Acadia National Park. Environmental Pollution, 177, 116–124. https://doi.org/10.1016/j.envpol.2013.02.015
Tanabe, S., Kannan, N., Subramanian, A., Watanabe, S., &Tatsukawa, R. (1987). Highly toxic coplanar PCBs: Occurrence, source, persistency and toxic implications to wildlife
and humans. Environmental Pollution, 47(2), 147–163. https://doi.org/10.1016/0269-7491(87)90044-3
Tejima, H., Nishigaki, M., Fujita, Y., Matsumoto, A., Takeda, N., &Takaoka, M. (2007). Characteristics of dioxin emissions at startup and shutdown of MSW incinerators. Chemosphere, 66(6), 1123–1130. https://doi.org/10.1016/j.chemosphere.2006.06.015
Van denBerg, M., Birnbaum, L. S., Denison, M., DeVito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., &Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223–241. https://doi.org/10.1093/toxsci/kfl055
van denBerg, M., Denison, M. S., Birnbaum, L. S., DeVito, M. J., Fiedler, H., Falandysz, J., Rose, M., Schrenk, D., Safe, S., Tohyama, C., Tritscher, A., Tysklind, M., &Peterson, R. E. (2013). Polybrominated dibenzo-p-dioxins, dibenzofurans, and biphenyls: Inclusion in the toxicity equivalency factor concept for dioxin-like compounds. Toxicological Sciences, 133(2), 197–208. https://doi.org/10.1093/toxsci/kft070
Viberg, H., Johansson, N., Fredriksson, A., Eriksson, J., Marsh, G., &Eriksson, P. (2006). Neonatal exposure to higher brominated diphenyl ethers, hepta-, octa-, or nonabromodiphenyl ether, impairs spontaneous behavior and learning and memory functions of adult mice. Toxicological Sciences, 92(1), 211–218. https://doi.org/10.1093/toxsci/kfj196
Viberg, H., Mundy, W., &Eriksson, P. (2008). Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. NeuroToxicology, 29(1), 152–159. https://doi.org/10.1016/j.neuro.2007.10.007
Wang, L. C., Hsi, H. C., Chang, J. E., Yang, X. Y., Chang-Chien, G. P., &Lee, W. S. (2007). Influence of start-up on PCDD/F emission of incinerators. Chemosphere, 67(7), 1346–1353. https://doi.org/10.1016/j.chemosphere.2006.10.081
Wang, L. C., Hsi, H. C., Wang, Y. F., Lin, S. L., &Chang-Chien, G. P. (2010). Distribution of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in municipal solid waste incinerators. Environmental Pollution, 158(5), 1595–1602. https://doi.org/10.1016/j.envpol.2009.12.016
Wang, L. C., Lee, W. J., Lee, W. S., &Chang-Chien, G. P. (2010). Emission estimation and congener-specific characterization of polybrominated diphenyl ethers from various stationary and mobile sources. Environmental Pollution, 158(10), 3108–3115. https://doi.org/10.1016/j.envpol.2010.06.041
Wang, L. C., Lee, W. J., Lee, W. S., Chang-Chien, G. P., &Tsai, P. J. (2003). Characterizing the emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from crematories and their impacts to the surrounding environment. Environmental Science and Technology, 37(1), 62–67. https://doi.org/10.1021/es0208714
Wang, L. C., Wang, Y. F., Hsi, H. C., &Chang-Chien, G. P. (2010). Characterizing the emissions of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from metallurgical processes. Environmental Science and Technology, 44(4), 1240–1246. https://doi.org/10.1021/es903128e
Wyrzykowska-Ceradini, B., Gullett, B. K., Tabor, D., &Touati, A. (2011). PBDDs/Fs and PCDDs/Fs in the raw and clean flue gas during steady state and transient operation of a municipal waste combustor. Environmental Science and Technology, 45(13), 5853–5860. https://doi.org/10.1021/es200364u
Zhang, X., Zheng, M., Liu, G., Zhu, Q., Dong, S., Zhang, H., Wang, X., Xiao, K., Gao, L., &Liu, W. (2016). A comparison of the levels and particle size distribution of lower chlorinated dioxin/furans (mono- to tri-chlorinated homologues) with those of tetra- to octa-chlorinated homologues in atmospheric samples. Chemosphere, 151, 55–58. https://doi.org/10.1016/j.chemosphere.2016.02.059
行政院環境保護署檢測方法,排放管道中戴奧辛類化合物採 樣方法,NIEA A807.75C,2010。
孫世勤,台灣地區戴奧辛排放量推估,持久性有機污染物研討會,2008。
高雄市環保局,高雄市重要污染源戴奧辛長期連續採樣分析 四年計畫,2014。
環保署,建立台灣地區戴奧辛排放清冊及排放資料庫計畫,EPA-90-FA12-03-A158,2002a。
環保署,焚化爐戴奧辛排放連續採樣技術實驗計畫,2002。
環保署,有害空氣污染物長期監測及整合採樣之研究,2011。
環保署,固定污染源戴奧辛及重金屬排放調查及管制計畫,2013。
環保署,垃圾焚化處理技術論壇,2019。
基隆市天外焚化廠爐管廠商(AZZ)技術手冊,2019。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw