進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2906201614082000
論文名稱(中文) 壓電致動器自我流量偵測於可攜式微流體應用之研究
論文名稱(英文) Experimental Study of Flow Rate Self-sensing with Piezoelectric Actuator for Portable Microfluidic Applications
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 黃寶震
研究生(英文) Pao-Cheng Huang
學號 N28981515
學位類別 博士
語文別 英文
論文頁數 66頁
口試委員 召集委員-許藝菊
口試委員-李順來
口試委員-黃有榕
口試委員-王明浩
指導教授-張凌昇
中文關鍵字 微幫浦  等效電路  流量偵測  時域相移  壓電 
英文關鍵字 Time phase-shift (TPS)  Peristaltic micropump  Sensorless  Fow rate  Charge recovery 
學科別分類
中文摘要 對於可攜式壓電微幫浦系統而言,流量偵測、故障分析以及省電為三大重要課題。本研究首先提出了一種可應用於壓電式微幫浦系統閉迴路回授式流量自動偵測技術。其特點是蠕動式微幫浦系統不需添加任何流速計,只需運用微幫浦中原有之壓電致動器,搭配時域相移偵測技術即可透過微幫浦自身量測分析出輸出流量。時域相移偵測技術主要藉由不同流速情況下,訊號在微幫浦內的傳遞時間不同,使得偵測訊號與原始的訊號產生相位差。透過分析訊號間的相位差即可獲得相對應的流量值。本研究亦提出故障分析方法藉由Butterworth-Van Dyke (BVD)等效電路分析技術,可於壓電致動器組裝階段即分析檢測出三種故障情況。三種故障情況分別是壓電致動器上的壓電片破裂、固定壓電片的銀膠塗佈不均勻以及壓電片裝反。此故障分析方法可提高微幫浦組裝時的效能與良率避免將不良的壓電致動器組裝成微幫浦造成時間與成本的浪費。另外,對於可攜式系統而言,節能也是一大重要課題。因此需在設計電路階段將低功耗與能源循環功能列入考量,本研究提出一電荷循環利用之方法,利用壓電效應與逆壓電效應各別的電氣特性將原本會被捨棄掉的電荷循環利用,進而輔助下一個循環的壓電致動器驅動而達到節能之功效。
英文摘要 Flow rate sensing, failure analysis and power saving are the most important and critical issues for portable piezoelectric-based micropump systems. The proposed failure analysis methods can detect three types of failure according to the equivalent Butterworth-Van Dyke (BVD) model in the Lead Zirconate Titanate (PZT) actuator assembly stage. They are PZT cracking, uneven silver epoxy distribution and PZT inversion. Failure analysis in the early stage of PZT actuator assembly helps to avoid making failure micropumps. This failure analysis process can helps to improve manufacturing performance of micropumps. Power saving is another important study for portable systems. For saving the power, design circuits with lower power consumption and recycling system power are most popular. This article then proposes a charge recovery function for the peristaltic micropump driving circuit.
This dissertation presents a close-loop feedback flow rate self-sensing method for the piezoelectric-based peristaltic micropump system to measures liquid flow rate in the micropump. The sensing could be integrated with a peristaltic micropump using piezoelectric actuators based on the time phase shift (TPS) method. The presented sensing method can obtain the micro-flow rate within a micropump without any external flow sensors. We fabricated a prototype piezoelectric peristaltic micropump with three chambers and three piezoelectric actuators in the laboratory. The middle actuator works not only as an actuator for fluidic driving but also as a transducer for flow rate sensing. An evaluation cycle is performed to ascertain the relationship between the flow rate and the phase shift of output signal responses from the transducer. Experimental results demonstrate that the extreme small-scale flow rate in a piezoelectric peristaltic micropump can be measured by the proposed close-loop feedback method. Experimental results show that the amplitude of the transducer output signal has an extremely linear relationship with the flow rate from 5 to 30 ul/sec. The results are extended to propose a practical flow rate sensor, the design of which can be realized easily in the piezoelectric peristaltic micropump system for sensorless responses that can detect the flow rate without any sensors or circuits. The proposed TPS method is real-time, integrated, fast, efficient, and suitable for flow rate detection in piezoelectric peristaltic micropumps.
論文目次 ABSTRACT (CHINESE)…………………………………………….....I
ABSTRACT (ENGLISH) …….………………………………..….…..II
ACKNOWLEDGEMENT……………………………...……...…….. IV
CONTENT……………………………….…………………..……..…..V
LIST OF TABLES……………………………………………………VII
LIST OF FIGURES…………………………………………...…….VIII
CHAPTER 1. INTRODUCTION 1
1.1 Background and Motivation 1
CHAPTER 2. PORTABLE MICROFLUIDIC APPLICATIONS 4
2.1 Theory of PZT Actuator Failure Analysis 5
2.2 Charge Recovery in PZT Actuator Driving 10
2.3 Sensor-less Flow Rate Sensing 13
CHAPTER 3. CHARGE RECOVERY OF PORTABLE MICROFLUIDIC SYSTEM 17
3.1 Experimental Setup of Charge Recovery 18
3.2 Experimental Results and Discussion of Charge Recovery 20
CHAPTER 4. FLOW RATE SELF-SENSING 28
4.1 Experimental Setup of Time-Phase-Shift Flow Rate Sensing 32
4.2 Time-Phase-Shift Flow Rate Sensing 37
CHAPTER 5. PIEZOELECTRIC ACTUATOR FAILURE ANALYSIS 45
5.1 Experimental Setup for PZT Actuator Failure Analysis 45
5.2 Failure Analysis of Different Failures 46
CHAPTER 6. CONCLUSIONS 54
REFERENCES 57
PUBLICATIONS 62
參考文獻 [1] Anderson EH, Hagood NW, and Goodliffe JM. Self-sensing piezoelectric actuation: Analysis and application to controlled structures. In: Proceedings of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, Materials Conference; 1992. p. 2141-55.
[2] Dosch JJ, Inman DJ, and Garcia E. A self-sensing piezoelectric actuator for collocated control, J. In: Intelligent Material Systems and Structures 3; 1992. p. 166-85.
[3] Reza MSO. A Survey of Recent Innovations in Vibration Damping and Control Using Shunted Piezoelectric Transducers, In: IEEE Transaction on Control Systems Technology 11; 2003. p. 482-94.
[4] Liang C, Sun FP, and Rogers CA. Coupled Electro-Mechanical Analysis of Adaptive Material System-Determination of the Actuator Power Consumption and System energy Transfer. In: Intelligent Material Systems and Structures; 1994. p. 12-20.
[5] D.J. Laser, J.G. Santiago, A review of micropumps, Micromechanics Microengineering 14 (2004) 35-64.
[6] F. Amirouche, Y. Zhou, T. Johnson, Current micropump technologies and their biomedical applications, Microsystem Technologies 15 (2009) 647-666.
[7] V. Srinivasan, V. Pamula , M. Pollack , R. Fair, A digital microfluidic biosensor for multianalyte detection, Proc. IEEE Conf. on Micro Electro Mechanical Systems (2003) 327-330.
[8] J.M. Lappmann, A.P. Pisano, Simple, high-precision, microliter per minute, fluid-flow sensor, Proc. IEEE Conf. on Micro Electro Mechanical Systems (2011) 1197-1200.
[9] L. S. Jang, W. H. Kan, M. K. Chen, Y. M. Chou, Parameter extraction from BVD electrical model of PZT actuator of micropumps using time-domain measurement technique, Microfluid Nanofluid, (2009) doi:10.1007/s10404-009-0416-7.
[10] F. C. M. Pol van de , H. T. G. Lintel van, M. Elwenspoek, J. H. J. Fluitman, A thermopneumatic micropump based on micro-engineering techniques, Sens. Actuator A, 21 (1990) 198–202.
[11] B. Husband, M. Bu, V. Apostolopoulos, T. Melvin, A. G. R. Evans, Novel actuation of an integrated peristaltic micropump, Microelectron Eng., 73-74 (2004) 858-863.
[12] D. Campolo, M. Sitti, R. S. Fearing, Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves, IEEE Trans Ultrason Ferroel Freq. Control, 50(3) (2003) 237-244.
[13] G. Biancuzzi, T. Lemke, P. Woias, O. Ruthmann, H. J. Schrag, B. Vodermayer, T. Schmidc, F. Goldschmidtboeing, Performance of piezoelectric micropumps actuated by charge recovery, Procedia Chemistry, 1 (2009) 698–701.
[14] Ueda S. Electromechanical response of a center crack in a functionally graded piezoelectric strip. In: Smart Materials and Structures 14; 2005. p. 1133-8.
[15] Y.C. Hsu, N.B. Le, L.S. Jang, Investigation on the frequency discrepancy between actuator-membrane displacement and flow rate spectrum of diaphragm micropumps, Proc. Conf. on Microprocesses and Nanotechnology (2009) 432-433.
[16] Umeda M, Nakamura K. The measurement of high-power characteristics for a piezoelectric transducer based on the electrical transient response. In: Japanese Journal of Applied Physics 37; 1998. p. 5322-5
[17] Chou YM, Chen MK, Jang LS. Modified BVD Model of PZT Actuator using high-voltage square pulse method for micropumps. In: Microfluidics and Nanofluidics 8; 2010. p. 727-38
[18] Y.C. Hsu, M.S. Lin , Research on Plastic Peristaltic Micropumps With Diffuser Valves, Proc. of 25th Natl. Mechanical Engineering of CSME (2008).
[19] A. Olsson, G. Stemme, Diffuser-element design investigation for valve-less pumps, Sensors and Actuators A: Physical 57 (1996) 137-143.
[20] J.W. Waanders, Piezoelectric Ceramics - Properties and Applications, First ed. Eindhoven, The Netherlands Philips Components, Marketing Communications 1991.
[21] A. Olsson, G. Stemme, E. Stemme, Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps, Sensors and Actuators A: Physical 84 (2000) 165-175.
[22] L.S. Jang, Y. J. Li, S. J. Lin, Y. C. Hsu, W. S. Yao, M. C. Tsai, C. C. Hou, A stand-alone peristaltic micropump based on piezoelectric actuation, Biomed. Microdevices, 9 (2007) 185-194.
[23] Y.M. Chou, M. K. Chen and L. S. Jang, Modified BVD model of PZT actuator using high-voltage square pulse method for micropumps, Microfluidics and Nanofluidics, 8 (6) (2010) 727-738.
[24] D. Campolo, M. Sitti, R. S. Fearing, Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves, IEEE Trans Ultrason Ferroel Freq. Control, 50(3) (2003) 237-244.
[25] M. Augarten, Charge Recovery Circuit Maximizes Piezoelectric-actuator efficiency, EDN, Jan.6th (2011).
[26] G. Biancuzzi, T. Lemke, P. Woias, O. Ruthmann, H J Schrag, B Vodermayer, T Schmid and F Goldschmidtboeing , Design and simulation of advanced charge recovery piezoactuator drivers, J. Micromech. Microeng, 20 (2010) 105022 (12pp).
[27] B.W. Oudheusden, The determination of the effective ambient temperature for thermal flow sensors in a non-isothermal environment, Sensors and Actuators A: Physical 30 (1992) 5-26.
[28] N.T. Nguyen, Micromachined flow sensors-a review, Flow Measurement Instrumentation 8 (1997) 7-16.
[29] S. Beeby, G. Ensell, M. Kraft, N. White, MEMS mechanical sensors, Artech House, Boston MA. 2004.
[30] A. Wego, H. Glock, L. Pagel, S. Richter, Investigations on thermo-pneumatic volume actuators based on PCB technology, Sensors and Actuators A: Physical 93 (2001) 95-102.
[31] C. Yamahata, F. Lacharme, Y. Burri, M.A.M. Gijs, A ball valve micropump in glass fabricated by powder blasting, Sensors and Actuators B: Chemical 110 (2005) 1-7.
[32] S. Böhm, W. Olthuis, P. Bergveld, A plastic micropump constructed with conventional techniques and materials, Sensors and Actuators A: Physical 77 (1999) 223-228.
[33] O. Francais, I. Dufour, E. Sarraute, Analytical static modelling and optimization of electrostatic micropumps, Micromechanics Microengineering 7 (1997) 183-185.
[34] E. Stemme, G. Stemme, A valveless diffuser /nozzlebased fluid pump, Sensors and Actuators A: Physical 39 (1993) 159-167.
[35] H. Suzuki, R. Yoneyama, Integrated microfluidic system with electrochemically actuated on-chip pumps and valves, Sensors and Actuators B: Chemical 6 (2003) 38-45.
[36] L.Y. Tseng, A.S. Yang, C.Y. Lee, C.H. Cheng, Intvestigation of a piezoelectric valveless micropump with an integrated stainless-steel diffuser/nozzle bulge-piece design, Smart Materials and Structures 22 (2013) 085023.
[37] L.S. Jang, W.H. Kan, Peristaltic piezoelectric micropump system for biomedical applications, Biomedical Microdevices 9 (2007) 619-626.
[38] C.C. Liu, X.F. Zha, Study on a piezoelectric micropump for the controlled drug delivery system, Microfluidics and Nanofluidics 3 (2011) 377-390.
[39] R. Antony, M.S. Giri Nandagopal, N. Sreekumar, N. Selvaraju, Detection principles and development of microfluidic sensors in the last decade, Microsystem Technology 20 (2014) 1051-1061.
[40] H. Anderson, A. Berg, Microfluidic devices for cellomics-a review, Sensors and Actuators B:Chemical 92 (2003) 315-325.
[41] N. Svedin, E. Stemme, G. Stemme, A static turbine flow meter with a micromachined silicon torque sensor, Microelectromechanical Systems 12 (2003) 937-946.
[42] Y. Zhao, K. Chen, J. Yang, Novel target type flowmeter based on a differential fiber bragg grating sensor, Measurement 38 (2005) 230-235.
[43] Z. Liu, M.-L. V. Tse, A. P. Zhang, and H.-Y. Tam, Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co2+-doped optical fiber, Optical Letter 39 (2014) 5877–5880.
[44] Y. Gong, Q.F. Liu, C.L. Zhang, Y. Wu, Y.J. Rao, G.D. Peng, Microfluidic flow rate detection with a large dynamic range by optical manipulation, IEEE Photonics Technology Letters 27(2015) 2508-2511.
[45] V. Lien and F. Vollmer, Microfluidic flow rate detection based on integrated optical fiber cantilever, Lab Chip 7 (2007) 1352–1356.
[46] M. S. Cheri, H. Latifi, J. Sadeghi, M. S. Moghaddam, H. Shahraki, and H. Hajghassem, Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor, Analyst 139 (2014) 431–438.
[47] M.L. Wang, J.K. Chen, A high-precision gravity intravenous infusion rate meter using CMUT, IEEE Internation Ultrasonics Symposium Proceedings, 978 (2009) 1355-1358.
[48] Y. Fouillet, O. Fuchs, S. MAubert, M. Cichet, F. Baleras, C. Chabrol, N. David, R. Campagnolo, A silicon micropump with on-chip flow meter, Procedia Engineering 47 (2012) 314-317.
[49] K. Nakahara, M. Yamamoto, Y. Okayama, K. Yoshimura, K. Fukagawa, N. Miki, A peristaltic micropump using traveling waves on a polymer membrane, Micromechanics Microengineering 23 (2013) 085024.
[50] L.S. Jang, K. Shu, Y.C. Yu, Y.C. Li, C.H. Chen, Effect of actuation sequence on flow rates of peristaltic micropumps with PZT actuators, Biomedical Microdevices 11 (2009) 173-181.
[51] L.S. Jang, Y.J. Li, S.J. Lin, Y.C. Hsu, W.S. Yao, M.C. Tsai, C.C. Hou, A stand-alone peristaltic micropump based on piezoelectric actuation, Biomedical Microdevices 9 (2007) 185-194.
[52] W.J. Spencer, W.T. Corbett, L.R. Dominguez, B.D. Shafer, An electronically controlled piezoelectric insulin pump and valves, IEEE Transactionson Sonics and Ultrasonics 25 (1978) 153–156.
[53] Z.H. Zhang, J.W. Kan, S.Y. Wang, H.Y. Wang, Flow rate self-sensing of a pump with double piezoelectric actuators, Mechanical Systems and Signal Processing 41 (2013) 639-648.
[54] Jeng YR, Tsai PC, Fang TH. Nanomeasurement and fractal analysis of PZT ferroelectric thin films by atomic force microscopy. In: Microelectronic Engineering 65; 2003. p. 406-15.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-06-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-06-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw