進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2906201600012300
論文名稱(中文) 具重疊時間限制之混合流程式生產派工策略
論文名稱(英文) The Dispatching Strategy in Hybrid Flow Shop with Overlapping Time Constraints
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 104
學期 2
出版年 105
研究生(中文) 謝宗廷
研究生(英文) Tsung-Ting Hsieh
學號 R37031223
學位類別 碩士
語文別 中文
論文頁數 76頁
口試委員 指導教授-張秀雲
口試委員-葉丁鴻
口試委員-陳明德
中文關鍵字 時間限制  混合流程式生產  派工策略  投料法則  Arena 
英文關鍵字 time constraints  hybrid flow shop  dispatching policy  release rule  Arena 
學科別分類
中文摘要 時間限制之生產問題是指工件在兩製程間,當前一製程加工完畢後,需在某一特定時間內,進入到後一製程開始加工,否則將會產生報廢或良率下降等問題,通常存在於工廠內之濕製程中;然而重疊型時間限制生產問題,則是當各製程間之時間限制發生重疊的情況,將會讓時間限制問題更為棘手。現今電子製造業之競爭對手增加,競爭相當激烈,工廠需提供客戶大量之不同客製化產品,如此造成工廠內生產型態變得相對複雜;且電子製造業中,原物料成本及機台成本都是相當昂貴,故適當之產能規劃能使機台利用率最高,並維持工件之目標良率,為工廠內部相當重要的議題。
本研究考量具有重疊型時間限制之混合流程式生產機台環境,首先針對廠內工件需求數以等候理論驗證廠內之機台數是否有過多或不足之情形,接著再發展適合之排程方法,包含兩種派工策略以及投料法則。兩種派工策略分別為平均WIP數量以及針對重疊時間限制之重疊區內進行設計,主要目的在減少等待時間及超出時間限制之工件數量最小化;投料法則是控制工件進入生產系統內加工之時間點,避免生產系統負載過重,減少不良品產生。
本研究使用Arena系統模擬軟體進行派工策略與投料法則建模與數據分析,並觀察派工策略與投料法則之四種派工策略組合在重疊型時間限制下之良品數,與超出時間限制之工件數是否能有效地控制;依照模擬結果顯示,派工策略(一)、派工策略(二)與投料法則之派工策略組合能用最小的成本並有效減少報廢數與達成目標良品數,此方法為最佳解決重疊型時間限制問題之方案。
英文摘要 This study considers the production environment of hybrid flow shop with time constraints between stages, the constraints maybe overlap (i.e., overlapping time constraints). Queuing theory is used to compute the minimum number of machines required. Subsequently, two dispatching policies are developed to decrease waiting time and minimize the number of jobs that breach time constraints. One release rule is used to control the entry time of products as to prevent the production system from becoming overloaded. Furthermore, the simulation software Arena is used to model a hybrid flow shop that adopts combinations of the two dispatching policies and the release rule. According to the simulation results, the policy of collectively adopting the two dispatching policies and the release rule can reduce scrapped production and meet the production goal with least cost.
論文目次 摘要 i
Extended Abstract ii
誌謝 viii
目錄 ix
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究範圍與限制 4
1.5 研究架構 4
第二章 文獻探討 6
2.1 時間限制問題 6
2.1.1 時間限制下之產能規劃問題 6
2.1.2 以成本角度探討時間限制 7
2.2 混合流程式排程問題 7
2.3 WIP數量控制問題 9
2.4 派工問題 10
2.4.1 動態式派工問題 10
2.4.2 具時間限制之派工問題 12
2.5 系統模擬應用 12
2.6 小結 13
第三章 研究方法 14
3.1 問題描述 14
3.2 最小需求機台數 17
3.3投料法則與派工策略 18
3.3.1 派工策略 19
3.3.2 投料法則 23
3.4 小結 25
第四章 模擬實驗 26
4.1 製程說明 26
4.2 模擬環境與參數說明 27
4.2.1 模擬環境設定與實際訂單狀況 27
4.2.2 機台工時與時間限制資料 29
4.2.3 模擬結果之成本換算 31
4.2.4 實驗因子 32
4.3 數據分析 34
4.3.1 Process Analyzer分析 34
4.3.2 瓶頸站增加機台後之實驗分析 42
4.4 派工策略於正常需求量下適用性檢視 50
4.5 小結 52
第五章 結論與未來研究方向 54
5.1 結論 54
5.2 未來研究方向 55
參考文獻 56
附錄A:Arena詳細模組建構 59
參考文獻 Akkerman, R., Van Donk, D. P., & Gaalman, G. (2007). Influence of capacity-and time-constrained intermediate storage in two-stage food production systems. International Journal of Production Research, 45(13), 2955-2973.

Chen, M., Sarin, S. C., & Peake, A. (2010). Integrated lot sizing and dispatching in wafer fabrication. Production Planning and Control, 21(5), 485-495.

Chu, L., Hui, L., & Hung, F. Y. (2013, October). Simulation of theme park queuing system by using Arena. In Intelligent Information Hiding and Multimedia Signal Processing, 2013 Ninth International Conference (pp. 17-20). IEEE.

Chung, J., & Jang, J. (2009). A WIP balancing procedure for throughput maximization in semiconductor fabrication. Semiconductor Manufacturing, IEEE Transactions on, 22(3), 381-390.

Corry, P., & Kozan, E. (2004). Job scheduling with technical constraints. Journal of the Operational Research Society, 55(2), 160-169.

Glassey, C. R., & Resende, M. G. (1988). Closed-loop job release control for VLSI circuit manufacturing. IEEE Transactions on Semiconductor manufacturing, 1(1), 36-46.

Huixian, L., Junqing, S., & Zhe, Y. (2012, July). Simulation and optimization of multi-echelon inventory control and coordination in supply chain based on Arena. In Control Conference (CCC), 2012 31st Chinese (pp. 7239-7244). IEEE.

Li, Y., Jiang, Z., & Jia, W. (2012, August). A pull VPLs based release policy and dispatching rule for semiconductor wafer fabrication. In Automation Science and Engineering (CASE), 2012 IEEE International Conference on (pp. 396-400). IEEE.

Li, Y., Jiang, Z., & Jia, W. (2014). An integrated release and dispatch policy for semiconductor wafer fabrication. International Journal of Production Research,52(8), 2275-2292.

Long, J., Zheng, Z., Gao, X., & Chen, K. (2015, May). Simulation method for multi-machine and multi-task production scheduling in steelmaking-continuous casting process. In System of Systems Engineering Conference (SoSE), 2015 10th (pp. 71-76). IEEE.

Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439-1454.

Robinson, J. K., & Giglio, R. (1999). Capacity planning for semiconductor wafer fabrication with time constraints between operations. In Simulation Conference Proceedings, 1999 Winter (Vol. 1, pp. 880-887). IEEE.

Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1-18.

Scholl, W., & Domaschke, J. (2000). Implementation of modeling and simulation in semiconductor wafer fabrication with time constraints between wet etch and furnace operations. IEEE Transactions on Semiconductor Manufacturing, 13(3), 273-277.

Spearman, M. L., Woodruff, D. L., & Hopp, W. J. (1990). CONWIP: a pull alternative to kanban. The International Journal of Production Research, 28(5), 879-894.

Tu, Y. M., & Chen, H. N. (2009). Capacity planning with sequential two-level time constraints in the back-end process of wafer fabrication. International Journal of Production Research, 47(24), 6967-6979.

Tu, Y. M., & Liou, C. S. (2006). Capacity determination model with time constraints and batch processing in semiconductor wafer fabrication. Journal of the Chinese Institute of Industrial Engineers, 23(3), 192-199.

Wein, L. M. (1988). Scheduling semiconductor wafer fabrication. Semiconductor Manufacturing, IEEE Transactions on, 1(3), 115-130.

Wu, C. H., Lin, J. T., & Chien, W. C. (2010). Dynamic production control in a serial line with process queue time constraint. International Journal of Production Research, 48(13), 3823-3843.

Wu, C. H., Lin, J. T., & Chien, W. C. (2012). Dynamic production control in parallel processing systems under process queue time constraints. Computers & Industrial Engineering, 63(1), 192-203.

Yan, H., Lou, S., Gardel, S.S.A. and Deosthli, P. (1992). Testing the robustness of various production control policies in semiconductor manufacturing, submitted to IEEE Transactions on Semiconductor Manufacturing, PP.1-24.

Zhang, H., Jiang, Z., & Guo, C. (2009). An optimised dynamic bottleneck dispatching policy for semiconductor wafer fabrication. International Journal of Production Research, 47(12), 3333-3343.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw