進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2906201500214900
論文名稱(中文) 衝偏出跑道重大意外事件之飛航駕駛員人為因素探討
論文名稱(英文) Significant Pilot Risk Factors in Runway Excursion
校院名稱 成功大學
系所名稱(中) 交通管理科學系碩士在職專班
系所名稱(英) Department of Transportation & Communication Management Science(on the job class)
學年度 103
學期 2
出版年 104
研究生(中文) 蕭郁蓉
研究生(英文) Yu-jung Hsiao
學號 R57021094
學位類別 碩士
語文別 英文
論文頁數 96頁
口試委員 指導教授-張有恆
口試委員-鄭永祥
口試委員-楊慧華
中文關鍵字 跑道安全  衝出跑道  偏出跑道  人為風險因子  SHELLO模式 
英文關鍵字 runway safety  runway excursion  human factor  SHELLO model 
學科別分類
中文摘要 近年來空運運量及航班架次與日俱增,飛航安全議題成為大家所關注焦點。飛機起降於機場跑道,跑道安全更顯得重要。跑道安全議題主要分為有跑道入侵(runway incursion)、衝出/偏出跑道(runway excursion)、跑道混淆(runway confusion),其中尤其衝出/偏出跑道發生機率以及造成危害大。根據我國飛航安全調查委員會2004-2013年十年飛安統計資料顯示國籍民用航空運輸業35架航空器飛航事故中有12架衝出/偏出跑道;在國際統計數字顯示,國際航空運輸協會(International aviation transport association, IATA)統計2010-2014年五年間全球民用航空運輸業415件飛航事故中有90件為衝/偏出跑道及滑行道。跑道安全議題中衝/偏出跑道也列為近年來國際航空組織重要討論議題。衝/偏出跑道事故主要原因多與飛航駕駛員操作以及天氣環境互動有強烈相關性。因此本研究主要探討飛航駕駛員於衝/偏出跑道之人為風險因子,進而降低衝/偏出跑道事故的發生。

本研究以SHELLO模式為基礎,將飛航駕駛員人為風險因子分為六個互動構
面,包括飛航駕駛員核心能力、飛航駕駛員與他人互動、飛航駕駛員與環境互動、飛航駕駛員與組織互動、飛航駕駛員與軟體互動及飛航駕駛員與硬體互動。本研究以國內外相關文獻資料收集方法,進行飛航駕駛員發生衝/偏出跑道風險因子之篩選。首先由國籍航空公司的145位飛航駕駛員針對各個風險因子進行重要度篩選,篩選出SHELLO模式各構面之飛航駕駛員顯著人為風險因子;接著以專家問卷方式,將篩選之顯著人為風險因子請國內飛航專家針對該因子評選相對重要性,藉由層級分析法進行各構面風險因子值的相對重要性排序,並評估各構面風險因子之改善可行性,建構一整合模式,提出改善優先順序之建議,發展出飛航駕駛員於衝/偏出跑道之人為風險因子減少改善方法及策略,以供相關主管機關於預防衝/偏出跑道策略評估之參考。

根據SHELLO模式調查結果,與環境互動構面在全體飛航駕駛員評選中排序為第一,飛航駕駛員們認為最重要風險因子為濕滑跑道;而飛航駕駛員核心能力構面在全體專家排序中排名第一,其中專家們認為最重要的前五項飛航駕駛員於衝/偏出跑道之風險因子分別為「飛航駕駛員之安全態度」、「飛航駕駛員之情境察覺及注意力」、「不追究錯誤重飛政策」、「飛航駕駛員應變能力」及「飛航駕駛員不符合規定作業」,分別落在飛航駕駛員核心能力構面、飛航駕駛員與組織互動構面。
英文摘要 Runway safety is always the top issue around the world because of increases in air traffic volume in recent years. The most fatal accidents associated with runways are called runway excursions. A breakdown analysis of civil aviation accidents worldwide indicates that the occurrence rate of runway excursions is 22%, which represents the largest factor among all categories (IATA, 2015). Runway excursions tend to occur due to human errors especially pilot errors. Identifying human risk factors associated with pilots in runway excursions will effectively reduce the severe threat of fatalities and losses caused by runway excursion accidents and incidents.
The purpose of this study is to examine significant human risk factors in runway excursions. Based on the IATA RERR 2nd program, we developed 70 human risk factors under a SHELLO model of six dimensions including liveware, liveware to liveware, liveware to organization, liveware to software, liveware to environment, and liveware to hardware. The fuzzy-set theory and Analytical Hierarchy Process (AHP) are applied to evaluate the importance of the risk human factors from the perspective of 145 Taiwan pilots, and this study integrates aviation management level expert opinions about relative weighting and improvement-achievability in order to develop four kinds of priority risk management strategies for airline pilots to reduce runway excursions.
This empirical study of experts’ evaluation suggests that the most important dimension is the liveware as pilot’s core ability, and the top ten significant risk factors are safety attitude, situation awareness, no-fault go-around policy, ability to deal with contingency or emergency, and operation deviation. Meanwhile, from the perspective of front-line pilots, the most important risk factor is environment, wet/ containment runways and weather issue, rain/thunderstorm.
This paper contributes to aviation safety by developing a roadmap for the strategies of mitigating runway excursion with the risk factors ranked in order of importance, thereby helping management authorities improve major operational and managerial weaknesses and also reduce the risks related to runway excursions.
論文目次 Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Research Motivation 2
1.3 Research Purpose 3
1.4 Research Framework 4
Chapter 2 Literature Review 5
2.1 Runway Excursion Background and definition 5
2.1.1 International Civil Aviation Organization (ICAO) 5
2.1.2 Federal Aviation Administration (FAA) 6
2.1.3 EuroControl 6
2.1.4 Boeing 7
2.2 Factors Contributing to Runway Excursion 8
2.3 Aviation Human Factor 12
2.3.1 SHELL Model 13
2.3.2 Swiss Cheese Model 15
2.3.3 Human Factor Analysis and Classification System (HFACS) 17
2.4 IATA Accident Classification System 19
2.5 Summary 25
Chapter 3 Model Construction 26
3.1 SHELLO Model 26
3.2 Selection of Preliminary Risk Factors under SHELLO Dimension 27
3.3 Methodology 33
3.3.1 Fuzzy Method 33
3.3.2 Analytic Hierarchy Process (AHP) 34
3.3.3 Improvement- Achievability Analysis 37
3.3.3.1 Measurement of Improvement-Achievability 37
Chapter 4 Empirical Analysis 39
4.1 First Stage Questionnaire – Pilot Survey 39
4.1.1 The Top Most Significant Risk Factors in each Dimension 41
4.1.2 Independent-Sample T-Test 46
4.2 The Second Stage - Expert Questionnaire 48
4.2.1 Test of Consistency 48
4.2.3 Overall Pilot Risk Factors Relative Weighting 55
4.2.4 Comparison of Risk Factor Weight Rankings between Airline Pilots and the Aviation Management Level Experts 55
4.3 Risk Factors Improvement-Achievability Analysis 58
4.4 Priority Order to Improve Pilot’s Risk Factors to Runway Excursion 61
4.4.1 Integration of Relative Weighting and Improvement-Achievability 61
4.4.2. Improvement Strategy for Risk Factors for Runway Excursion 65
Chapter 5 Conclusions and Suggestions 68
5.1 Research Conclusions 68
5.2 Research Suggestions 70
5.3 Research Contributions 70
5.4 Future Research Directions 71
Reference ………………………………………………………………………..72
Appendix I : The First Stage Questionnaire for Pilot Survey 78
Appendix II: The Second Stage Questionnaire for Expert Survey 84
參考文獻 1. ACRP (2010), Analysis of Aircraft Overrun and Undershoots for Runway Safety Areas, Airport Cooperative Research Program, Transportation Research Board of the National Academes, Washington, DC.
2. ACRP (2010), Improved Models for Risk Assessment of Runway Safety Areas, Airport Cooperative Research Program, Transportation Research Board of the National Academes, Washington, DC.
3. ACRP (2014), Development of a Runway Veer-off Location Distribution Risk Assessment Model and Reporting Template, Airport Cooperative Research Program, Transportation Research Board of The National Academes, Washington, DC.
4. ASC (2014), Taiwan Aviation Occurrence Statistics 2004-2013, Aviation Safety Council, Taipei.
5. ATSB (2008), Runway Excursion I: A Worldwide Review of Commercial Jet Aircraft Runway Excursion, Aviation Research and Analysis Report AR-2008-018 (1), Australian Transport Safety Bureau, Canberra, Australian
6. ATSB (2008), Runway Excursion II: Minimizing the Likelihood and Consequences of Runway Excursion, Aviation Research and Analysis Report AR-2008-018 (2), Australian Transport Safety Bureau, Canberra, Australian
7. Bodin, L., Gass, S. I. (2003), On teaching the analytic hierarchy process, Computer and Operation Research 30(10), 1487-1497.
8. Boeing (1993), Accident Prevention Strategies, Airplane Safety Engineering, Seattle, Washington.
9. Boeing (2012), Aeromagazine QTR-3, 12, P15-19, Seattle, Washington.
10. Boeing (2014), Statistical Summary of Commercial Jet Airplane Accidents, Seattle, Washington.
11. Chang IS; Tsujimura, Y; Gen, M. (1995), An efficient Approach For Large-Scale Project-Planning Based On Fuzzy Delphi Method, Fuzzy Sets and System, Vol.76, No.3, pp277-288.
12. Chang, Y.H., and Wang, Y.C. (2003), A Study on Runway Incursion, Civil Aviation Journal Quarterly, VOL.5 No.4.
13. Chang, Y.H., and Wang, Y.C. (2010), Significant human risk factors in aircraft maintenance technicians, Safety Science, Vol.48, Issue.10, pp.54-62.
14. Chang, Y.H., and Wong, K.M. (2012), Human risk factors associated with runway incursion. Journal of Air Transport Management, 24, 25-30.
15. Chang, Y.H., and Yeh, C.H. (2010) Human performance interfaces in air traffic control, Applied Ergonomics, Vol.48, Issue.1, pp.123-129.
16. Chapanis A., Garner W., and Morgan C. (1949), Applied Experimental Psychology: Human Factors in Engineering Design, John Wiley and Sons Inc., Hoboken, NJ, US.
17. Chapanis A. (1965), Words, words, words, Human Factors, 7, 1-17.
18. Chen, S. H. and Hsieh, C. H., (2000), Representation, Ranking, Distance, and Similarity of L-R Type Fuzzy Number and Application, Australian Journal of Intelligent Processing Systems, Vol. 6, No. 4, pp. 217-229.
19. Civil Aviation Authority (2014), A strategy for Human Factors in Civil Aviation, Civil Aviation Authority, London, England.
20. Civil Aviation Authority (2014), Safety Plan 2014-16, London, England.
21. Dalkey, N. C. (1969), The Delphi Method: An Experimental Study of Group Opinion, RAND cooperation, RM-5888-PR.
22. EASA (2013), Reduction of Runway Excursion, European Aviation Safety Agency.
23. EATM (2007), The Human Factors Case: Guidance For Human Factor Integration, European Air Traffic Management of EuroControl.
24. Edward, E (1972), Man and Machine: System for safety, Proceeding of British Airline Pilot Association Technical Symposium.
25. Elwyn E (1988), Introductory Overview, Human Factors in Aviation, Academic Press, San Diego, p3-24.
26. EuroControl (2006), Revisiting the “Swiss Cheese” Model of Accidents, Brussels, Belgium.
27. EuroControl (2010), A Study of Runway Excursion from a European Perspective, Brussels, Belgium.
28. EuroControl (2012), European Action Plan for the Prevention of Runway Excursions, edition 1.0, Brussels, Belgium.
29. EuroControl (2013), Go-around: A Response to Runway Excursions, Brussels, Belgium.
30. Flight Safety Foundation (1998), Killers in aviation: FSF task force presents facts about approach-and-landing and controlled-flight-into-terrain accidents, Flight Safety Digest Vol.7, Alexandria, Virginia, U.S..
31. Flight Safety Foundation (2000), FSF ALAR Briefing Note 8.1: Runway excursions, Alexandria, Virginia, U.S..
32. Flight Safety Foundation (2009), Reducing the Risk of Runway Excursions, Alexandria, Virginia, U.S..
33. Garvey, P. R. (2008), Analytical Methods for Risk Management: A Systems Engineering Perspective, Chapman-Hall/CRC-Press, Taylor and Francis Group (UK), Boca Raton, London, New York, ISBN: 1584886374.
34. Hawkins, F. H. (1998), Human Factors in Flight. Gower Technical Press, England.
35. Helmreich, R.L., Klinect, J.R., and Wilhelm, J.A., (1999), Models of threat, error, and CRM in flight operations. In Proceedings of the Tenth International Symposium on Aviation Psychology, pp. 677-682, Columbus, Ohio.
36. Helmreich, R.L., Wilhelm, J.A., Klinect, J.R., and Merritt, A.C. (1999), Culture, error and Crew Resource Management, Improving teamwork in organizations: Applications of resourcement management training, pp.305-331, Hillsdale, NJ: Erlbaum.
37. Ho, H., Lee, H.C., Tsai, W.L. (2001), An Overview of Human Factors in Aviation Safety, Civil Aviation Journal Quarterly, Vol.3, No.2.
38. HSE (2005), Inspectors Toolkit: Human Factors in the Management of Major Accident Hazards, Health and Safety Executive, P1-9.
39. IFALPA Aerodrome and Ground Environment Committee (2008), Runway Safety Manual, Montreal, Quebec.
40. International Air Transport Association (2006), Safety Report. International Air Transport Association. International Air Transport Association, Geneva.
41. International Air Transport Association (2010), 2004-2009 RE Analysis Report. International Air Transport Association, Geneva.
42. International Air Transport Association (2010), Runway Excursion Case Studies: Threat and Error Management (TEM) Framework. International Air Transport Association, Geneva.
43. International Air Transport Association (2011), Aerodrome best practice, RERR 2nd edition. International Air Transport Association, Geneva.
44. International Air Transport Association (2011), Runway excursion risk management process (RMP), RERR 2nd edition. International Air Transport Association, Geneva.
45. International Air Transport Association (2012), Runway Excursion Analysis Report 2004-2009, RERR 2nd edition. International Air Transport Association, Geneva.
46. International Air Transport Association (2013), Safety Report. International Air Transport Association. International Air Transport Association, Geneva.
47. International Air Transport Association (2014), Safety Report. International Air Transport Association. International Air Transport Association, Geneva.
48. International Air Transport Association (2015), Safety Report. International Air Transport Association. International Air Transport Association, Geneva.
49. International Civil Aviation Organization (1993), Investigation of Human Factors in Accidents and Incidents, Human Factor Digest No.7, International Civil Aviation Organization, Montreal, Quebec.
50. International Civil Aviation Organization (1998), Human Factors Training Manual, Doc9683-AN/950. International Civil Aviation Organization, Montreal, Quebec.
51. International Civil Aviation Organization (2009), Safety Management Manual, Doc9859-AN/474. International Civil Aviation Organization, Montreal, Quebec.
52. Isaac, A.I. (1999), Air Traffic Control: Human Performance Factors, Aldershot, Asggate, 1999.
53. Ishikawa, A., Amagasa, M. and Shiga, T. (1993), The Max-Min Delphi Method and Fuzzy Delphi Method via Fuzzy Integration, Fuzzy Sets and Systems, Vol.55, No.3, pp.241-253.
54. Koonce, J.M. (2002), Human Factors in the Training of Pilots, Great Britain: Biddles, 5-11.
55. Lazarus, R.S. (1996), Psychological stress and the coping process, McGraw-Hill.
56. Luis G. Vargas. (1990), An Overview of the Analytic Hierarchy Process and Its Application, European Journal of Operational Research, Vol.48, No.1, pp.2-8.
57. Maurino, D. (2005), Threat and Error Management (TEM): ICAO Canadian Aviation Safety Seminar (CASS), 18-20 April 2005, Vancouver, BC.
58. NLR Air Transport Safety Institute (2010), A Study of Runway Excursion from A European Perspective, Amsterdam, Netherlands.
59. Picano, J. (1991), Personality types among experience military pilots, Aviation Spaces, and Environmental Medicine, 62(6), pp.517-520.
60. R. J. Kuo (2010), A Decision Support System for the Stock Market Through Integration of Fuzzy Neural Networks and Fuzzy Delphi, Applied Artificial Intelligence, Vol.12, No.6, pp.501-520.
61. Reason (1990), The Contributing of Latent Human Failures to the Breakdown of Complex Systems.
62. Reason (1995), Understanding Adverse Events: Human Factors.
63. Reason (2000), Human Error: Models and Management.
64. Rochat, P. (1993), New Approaches and Commitment Will Be Needed before We Can Resolve the Human Factor Problem In Aviation, ICAO Journal. Vol.48, No.7, P7.
65. Saaty, T. L. (1987), Risk – Its Priority and Probability, Risk Analysis, Vol.7, No.2, pp.159-172.
66. Saaty, T. L. (1990), How to Make a Decision: The Analytic Hierarchy Process, European Journal of Operational Research, Vol.48, No.1, pp.9-26.
67. Saaty, T. L. (2008), Decision Making the Analytic Hierarchy Process, Services Sciences, Vol.1, No.1, pp.83-98.
68. Shao, P.C., Chang Y.H., and Chen H.J. (2013), Analysis Of Aircraft Accident Model In Taiwan. Journal of Air Transport Management 27, 34-38.
69. Shappel, S.A., Wiegmann, D.A. (2000), The Human Factors Analysis and Classification System – HFACS, DOT/FAA/AM-00/7.
70. Shappell, Holcomb, Hackworth, Boquet, Wiegmann (2006), Human Error and Commercial Aviation Accidents: A Comprehensive, Fine-grained Analysis Using HFACS.
71. Shappell, Holcomb, Hackworth, Boquet, Wiegmann (2007), Human Error and Commercial Aviation Accidents: An Analysis Using the Human Factors Analysis and Classification System.
72. US Federal Aviation Administration (2013), ORDER 7050.1B, subject: Runway Safety Program. Federal Aviation Administration, Washington DC.
73. US Federal Aviation Administration (2014), National Runway Safety Plan 2015 – 2017. Federal Aviation Administration, Washington DC.
74. Wang, S.Er., Lu, P.J., Chen, C.C., Pan Y.J. (2003), Evaluation of the Correlation for Organizational Climate and Safety Climate within Crew Resource Management by Clusters of Pilot, Transportation Planning Journal, Vol.32, No.3, pp.527-560.
75. Wind, Y. and Saaty, T.L. (1980), Marketing Application of The Analytic Hierarchy Process, Management Science, Vol.26, No.7, pp.641-658.
76. Yeh, C.H., Chang, Y.H. (2009), Modeling subjective evaluation for fuzzy group multicriteria decision making, European Journal of Operational Research, 194, 464-473.

Web Pages Reference
1. Airservices Australia website: www.airservicesaustralia.com/flight-briefing/pilot-and-airside-safety/runway-safety/ Retrieved 2014-11-07
2. Aviation Safety Council website: https://www.asc.gov.tw/main_ch/index.aspx
Retrieved 2014-11-03
3. ASC Aviation Safety Council website: www.asc.gov.tw/
Retrieved 2015-06-05
4. CAA website: http://www.caa.co.uk
Retrieved 2014-11-04
5. CANSO website: http://www.cansosafety.com/
Retrieved 2014-11-03
6. EUROCONTROL website: http://www.eurocontrol.int/articles/runway-safety,
Retrieved 2014-11-05
7. FAA website: http://runwayexcursions.faa.gov/content.html?id=c
Retrieved 2014-11-02
8. FAA website: http://www.faa.gov/airports/runway_safety/
Retrieved 2014-11-01
9. Flight duty times website: http://www.flightdutytimes.eu/?page_id=337 Retrieved 2015-4-23
10. Helmreich, R. L., Wilhelm. J.A., Klinect, J.R., Merritt, A.C. (1999), Culture, Error and Crew Resource Management, http://www.psy.utexas.edu/psy/helmreich/
11. Human Factors and Ergonomics Society website:
http://www.hfes.org/Web/EducationalResources/HFEdefinitionsmain.html
Retrieved 2014-11-05
12. IATA RERR2nd edition, http://www.iata.org/iata/RERR-toolkit/main.html
Retrieved 2014-11-01
13. ICAO website: http://cfapp.icao.int/tools/RSP_ikit/story.html
Retrieved 2014-11-01
14. NLR Air Transport Safety Institute website: http://www.nlr-atsi.nl/
Retrieved 2014-11-01
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw