進階搜尋


   此篇論文尚未公開,紙本請查詢成功大學館藏
系統識別號 U0026-2906201112203500
論文名稱(中文) 性格與認知因素對大學生網路成癮之影響:一年追蹤研究
論文名稱(英文) The impact of personality and cognitive factors on the Internet addiction among college students in Taiwan: one-year follow-up
校院名稱 成功大學
系所名稱(中) 健康照護科學研究所
系所名稱(英) Institute of Allied Health Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 林旻沛
研究生(英文) Min-Pei Lin
電子信箱 lmmpp@yahoo.com.tw
學號 ta893101
學位類別 博士
語文別 中文
論文頁數 206頁
口試委員 指導教授-柯慧貞
口試委員-陸偉明
口試委員-鄭中平
召集委員-葉光輝
口試委員-顏正芳
中文關鍵字 大學生  網路成癮  神經質  衝動性  上網正向效果預期  拒網自我效能  Acquired Preparedness Model  追蹤性研究 
英文關鍵字 college students  Internet addiction  neuroticism  impulsivity  positive outcome expectancy  refusal self-efficacy  acquired preparedness model  follow-up study 
學科別分類
中文摘要 研究背景與目的
隨著網路使用人口增加、上網時數增長及網路普及,網路成癮所造成學業、工作、家庭及身心健康困擾之問題逐漸受到重視,並成為研究新趨勢和關注焦點。在網路使用的族群裡,大學生是網路成癮的高危險族群;但近年對大學生網路成癮之成因探討研究,缺乏取樣具代表性之大樣本;並且國內外研究多為橫斷性,缺乏追蹤性研究。
過去研究指出,性格因素中的神經質與衝動性皆能正向預測網路成癮;另一方面,認知因素中的上網正向效果預期能正向預測網路成癮、拒網自我效能可負向預測網路成癮,但上述變項與網路成癮之間可能的因果關係未明。此外,參考物質濫用研究中所使用的性格與認知整合模式,即所謂的準備習得模式(Acquired Preparedness Model,APM;以下簡稱為APM),推論上網正向效果預期能中介神經質/衝動性對網路成癮行為之影響。另外,過去研究也發現,拒網自我效能可中介上網正向效果預期對網路成癮之影響,但該中介模式亦缺乏縱貫性實徵資料之驗證。
是故,本研究之目的為抽取具代表性之大學生樣本,並以縱貫法釐清1.性格因素(神經質/衝動性)與網路成癮之間可能的因果關係;2.認知因素(上網正向效果預期/拒網自我效能)與網路成癮之間可能的因果關係;3.上網正向效果預期是否透過拒網自我效能影響網路成癮的發展;4.神經質/衝動性是否透過上網正向效果預期影響網路成癮的發展。

研究方法
研究設計:採縱貫法,於九十三學年度針對全國大學生進行抽樣調查,了解網路成癮與性格和認知因素間之關係;而後,再於九十四學年度,針對原先九十三學年度的大一、大二及大三學生進行追蹤,以了解認知和性格因素與網路成癮間可能的因果關係。
研究對象:為使樣本具有全國大學生之代表性,使用分層叢集抽樣法,針對不同男女性別、四年制與二年制,以及北區、中區、南區等因素(分層),以系為單位(叢集),抽取與全國大學生特性分佈相近之4,885名研究參與者。
研究工具:個人資料表、網路使用行為調查表、陳氏網路成癮量表、上網正向效果預期量表、拒網自我效能量表、五大性格因素量表簡版,以及簡式衝動性量表。
研究程序:由受過訓練之研究人員,至所抽樣的大學校院之科系,以班級為單位進行團體施測。施測流程與內容已詳細解說且強調保密性,在填寫研究參與同意書後,開始填寫相關量表;量表回收後進行建檔與嚴謹地除錯;數月後研究參與者收到回饋報告書。
統計分析:本研究以描述性統計、卡方與t檢定、相關分析,以及結構方程模式分析等方式,對研究假設進行分析與檢證。

研究結果
進行施測後,九十三學年度共回收3,996份問卷、回收率達81.80%;而扣除空白、大部分未填答、亂填…等相關無效問卷,最後得到有效樣本3,616名,樣本的反應率為90.49%。在九十四學年度的追蹤調查中,扣除九十三學年度大四學生後(有效樣本數2,920份),共追蹤到1,308份、追蹤率為44.79%。
在控制第一年網路成癮後,第一年神經質與第一年衝動性皆能顯著正向預測第二年網路成癮。
在控制第一年網路成癮後,第一年上網正向效果預期能顯著正向預測第二年網路成癮、第一年拒網自我效能可顯著負向預測第二年網路成癮,並且,第一年拒網自我效能可中介第一年上網正向效果預期對第二年網路成癮之影響。
在控制第一年網路成癮後,第二年認知因子(忘憂增趣)能中介第一年神經質對第二年網路成癮之影響。此外,在控制第一年網路成癮後,第二年認知因子(解禁慾望)也能中介第一年衝動性對第二年網路成癮之影響。

結論
本研究採用縱貫式研究設計,建立網路成癮之解釋模式和作用機制,驗證與支持社會認知理論和APM於解釋大學生網路成癮行為之適用性,並提供實務工作者於大學生網路成癮三級預防工作之參考,且為預防與介入之依據。
在性格因素的實務入界上,可訓練大學生內觀(Mindfulness)技巧與內觀練習活動來降低神經質/衝動性、增進情緒與行為調控能力,進而預防/降低網路成癮行為;在認知因素的實務介入方面,可針對網路成癮大學生,可挑戰/降低其對上網的正向效果預期,以及討論在高危險情境之下如何停止或拒絕上網的策略,進而降低網路成癮的嚴重性。
英文摘要 Background
Due to the increasing population of Internet users, Internet usage time and the prevalence of the Internet, Internet addiction is gaining great attention and has been observed to cause problems in school, work, family and psycho-social health. In the population of Internet users, students are grouped as the most likely to be Internet addicts, especially the high-risk university students. However, recent domestic and international studies on Internet addiction are largely limited to lack of a decent sampling method in the recruitment of a representative university student sample and most researches consist of a cross-sectional study design. Additionally, a longitudinal study design is needed.
Numerous studies have provided empirical evidence to identify the effectiveness of the personality (neuroticism/impulsivity) and cognitive factors (positive outcome expectancy/refusal self-efficacy) to explain and predict Internet addiction. Furthermore, previous studies also have found positive outcome expectancy positively predicted Internet addiction via refusal self-efficacy of Internet use. In order to integrate the personality and cognitive models to explain the addictive behavior, researchers have adopted the acquired preparedness model (APM). APM suggested positive outcome expectancy may mediate the relationships between personality traits and substance use behavior, and many studies have verified the theoretical effectiveness.
However, although personality and cognitive factors have been examined in Internet addiction, the relationship among them remains unclear and has not been used to explain the psychological process of Internet addiction. Therefore, by applying a decent sampling method in recruiting a nationwide representative set of university students, the purpose of this study was to examine whether personality and cognitive models, and APM are applicable in explaining the risks for Internet addiction. The present study adopted a longitudinal study design to explain the cause and effect relationship, and constructed a psychological process model for Internet addiction.

Methods
The present study was constructed using a one-year follow-up longitudinal design. Participants were recruited from universities and colleges throughout Taiwan using both stratified and random cluster sampling. The sample was first stratified by gender and school type: technical (two year vocational school) or non-technical college (university or four year technical school). The sample was then stratified by administrative region: northern, middle, or southern. A cluster random sampling by department was further applied to randomly choose participants from each major. A total number of 4,885 college students were sampled and invited to participant in the study. The Positive Outcome Expectancy and Refusal Self-Efficacy of Internet Use Questionnaire, the Shortened Chinese Version of the Five-Factor Inventory and Short-Form of Impulsive Scale, and the Chen Internet Addiction Scale were used to assess the cognitive and personality factors and the levels of Internet addiction, respectively. Associations between Internet addiction and cognitive and personality factors were examined using by the Structural Equation Model.

Results
Questionnaire response rate was 81.80% in 2004, and college freshmen, sophomores and juniors were follow-up one year later in 2005. The response rate at one-year follow-up was 44.79%. The results show that after controlling for Internet addiction assessed in 2004, Internet addiction in 2005 was significantly and positively predicted by neuroticism, impulsivity and positive outcome expectancy in 2004, and negatively and significantly predicted by refusal self-efficacy of Internet use in 2004. Further analyses revealed that after controlling for Internet addiction in 2004, positive outcome expectancy in 2004 positively predicted Internet addiction in 2005 via refusal self-efficacy of Internet use in 2004. Moreover, this study also discovered that after controlling for Internet addiction in 2004, cognitive factors in 2005 mediated the relationship between personality factors (neuroticism/impulsivity) in 2004 and Internet addiction in 2005.

Discussion
The present study used a longitudinal design to test social cognitive theory and APM for the risk of Internet addiction among college students in Taiwan. These results give empirical evidence to verify the theoretical effectiveness of the cognitive and personality factors to Internet addiction, which should be incorporated when designing prevention programs and strategies for helping Internet addicted college students.
論文目次 第一章、緒論 1
第一節、網路成癮問題的重要性 1
壹、台灣網路使用人口日益增加 1
貳、台灣民眾上網時數日益增長 3
参、網路普及後可能的隱憂 4
肆、「網路成癮」成為研究的新趨勢與關注的焦點 5
伍、大學生是網路成癮的高危險族群 7
第二節、網路成癮的定義與衡鑑 9
壹、網路成癮的定義 9
一、成癮的定義 10
二、網路成癮的定義 15
貳、網路成癮的衡鑑 18
第三節、大學生網路成癮可能的心理成因 21
壹、從性格因素來解釋網路成癮可能的心理成因 21
一、神經質 22
(一)神經質的定義 22
(二)高神經質較易產生網路成癮行為 23
二、衝動性 25
(一)衝動性的定義 25
(二)高衝動性較易產生網路成癮行為 26
貳、從認知因素來解釋網路成癮可能的心理成因 29
一、社會認知理論 29
(一)替代性學習 29
(二)認知歷程 30
(三)後續社會認知理論對「成癮行為」的看法 30
二、正向效果預期 32
(一)正向效果預期的定義 32
(二)高正向效果預期較易產生成癮行為 32
1.橫斷性研究 32
2.追蹤性研究 34
三、拒用自我效能 36
(一)拒用自我效能的定義 36
(二)低拒用自我效能較易產生成癮行為 37
1.橫斷性研究 37
2.追蹤性研究 38
四、拒用自我效能中介正向效果預期對成癮行為之影響 40
参、性格與認知因素之整合模式 43
一、APM之理論介紹 43
二、APM之成癮行為相關研究 47
(一)神經質方面的研究 47
(二)衝動性方面的研究 50
第四節、研究目的與假設 54
壹、研究目的 54
貳、研究假設 56
第二章、研究方法 58
第一節、研究設計 58
第二節、研究對象 59
壹、研究對象 59
貳、抽樣方式 60
第三節、研究工具 61
壹、個人資料表 61
貳、網路使用行為調查表 62
参、陳氏網路成癮量表 63
肆、上網正向效果預期量表 64
伍、拒網自我效能量表 65
陸、五大性格因素量表簡版 66
柒、簡式衝動性量表 67
第四節、研究程序 68
第五節、統計分析 69
第三章、研究結果 72
第一節、社會認知理論之驗證 72
壹、樣本之基本資料分析 72
一、第一年全國大樣本之基本資料分析 72
(一)樣本回收率與基本人口統計學分布狀況比較 72
(二)大學生網路使用之現況 75
1.過去一年內平均使用網路之時間、次數及頻率 75
2.最主要上網的時段與地點 75
3.獲得上網的方便性 77
二、第二年有追蹤與未追蹤之基本資料分析 79
(一)追蹤率 79
(二)有追蹤與未追蹤之基本資料比較 79
1.人口統計學方面之比較 79
2.各變項及其因素差異之比較 80
貳、正向效果預期、拒網自我效能與網路成癮的相關性 85
一、第一年各認知因子與第一年網路成癮總分的相關性 85
二、第一年各認知因子與第二年網路成癮總分的相關性 86
參、社會認知理論之驗證 90
一、第一年正向效果預期能正向預測第二年網路成癮 90
二、第一年拒網自我效能可負向預測第二年網路成癮 92
三、Two-Process Theory之驗證 93
第二節、神經質面APM之驗證 100
壹、第一年神經質能正向預測第二年網路成癮 101
貳、第二年認知因子能預測第二年網路成癮 102
參、第一年神經質能預測第二年認知因子 104
肆、第二年認知因子能中介第一年神經質對第二年網路成癮之影響 105
第三節、衝動性面APM之驗證 113
壹、第一年衝動性能正向預測第二年網路成癮 114
貳、第二年認知因子能預測第二年網路成癮 115
參、第一年衝動性能預測第二年認知因子 117
肆、第二年認知因子能中介第一年衝動性對第二年網路成癮之影響 118
第四章、討論 126
第一節、本研究之主要發現與解釋 126
壹、社會認知理論之驗證方面 126
一、樣本基本資料分析探討 126
(一)樣本代表性 126
(二)大學生網路使用現況 128
二、各認知因子與網路成癮之相關性探討 129
三、社會認知理論之驗證探討 132
(一)第一年正向效果預期正向預測第二年網路成癮 132
(二)第一年拒網自我效能負向預測第二年網路成癮 134
(三)第一年拒網自我效能中介第一年正向效果預期對第二年網路成癮之影響 135
貳、神經質面APM之驗證方面 138
一、第一年神經質正向預測第二年網路成癮 138
二、第二年認知因子預測第二年網路成癮 140
三、第一年神經質預測第二年認知因子 141
四、第二年認知因子中介第一年神經質對第二年網路成癮之影響 142
參、衝動性面APM之驗證方面 144
一、第一年衝動性正向預測第二年網路成癮 144
二、第二年認知因子預測第二年網路成癮 146
三、第一年衝動性預測第二年認知因子 148
四、第二年認知因子中介第一年衝動性對第二年網路成癮之影響 150
第二節、本研究之限制與未來研究方向 153
壹、研究設計部分 153
貳、研究參與者部分 154
參、研究工具部分 156
肆、研究變項部分 158
第三節、本研究之學術與應用貢獻 160
壹、學術貢獻方面 160
貳、應用貢獻方面 161
第五章、參考文獻 164
附錄 183
附錄I 個人資料表 183
附錄II 網路使用行為調查表 188
附錄III 陳氏網路成癮量表 191
附錄IV 上網正向效果預期量表 193
附錄V 拒網自我效能量表 195
附錄VI 五大性格因素量表簡版 197
附錄VII 簡式衝動性量表 200
自述 201
參考文獻 大紀元新聞網(2008)。中國擬將上網成癮列為法定精神疾病。2011年4月12日,取自 http://www.epochtimes.com/b5/8/11/15/n2330118.htm
毛文秉編譯(1986):流行病學導論,弘洋圖書有限公司出版。
王文科主譯(1989)。學習心理學---學習理論導論。五南圖書出版公司印行(B. R. Hergenhahn原著)。
中華民國教育統計指標(2002)。高等教育-九十學年度大專校院學生數分析。台北市:教育部。
王智弘(2004)。運用網路諮商以因應青少年網路問題行為。青少年網際網路使相關問題與防治對策研討會,嘉義縣,國立中正大學。2011年3月10日,取自 http://www.heart.net.tw/wang/paper-new/paper20040402.htm
王澄華(2001)。人格特質與網路人際互動對網路成癮的影響。私立輔仁大學心理學研究所碩士論文。
古博文(2010)。台灣地區老年人身體活動與認知功能受損之研究。國立陽明大學公共衛生研究所博士論文。
台灣高等教育整合資料庫(2006)。台灣高等教育電子報第二期―教育指標之94學年度大一、大三學生每週平均上網時數分析。2011年6月26日,取自 http://www.cher.ntnu.edu.tw/epaperi/prevcato/index2.php
台灣網路資訊中心(TWNIC)。2011年4月24日,取自 http://www.twnic.net.tw
吳其炘、廖士程、李宇宙(2005)。衝動的精神病理學。臺灣精神醫學,19,19-32。
李進賢、柯慧貞、翁儷禎、廖聆岑、陸汝斌(2002)。衝動性量表的發展:心理計量特性及其與反社會性格障礙之關係。中華心理學刊,44,109-119。
呂宗學總編譯(1997):臨床流行病學精要,九州圖書文物有限公司出版(Wllams & Wilkns Asia-Pacific Ltd.)
林旻沛(2004)。大專校院學生網路成癮盛行率及認知因子之研究。國立成功大學行為醫學研究所碩士論文。
林旻沛、丁建谷、賴雅純、柯慧貞(2005)。不同成人依附型態大學生在網路成癮傾向上之差異。中華心理衛生學刊,18,93-119。
周倩(1999)。我國學生電腦網路沉迷現象之整合研究-子計畫二:網路沉迷現象的心理病理之教育傳播觀點研究。行政院國家科學委員會專題研究計畫。
施淑芬(2008)。探討大學生網路使用行為對健康促進生活型態之影響。國立台北護理學院護理研究所碩士論文。
柯志鴻(2009)。以功能性磁振造影研究大學生網路成癮之認知神經機轉。高雄醫學大學醫學研究所博士論文。
柯慧貞、林旻沛、丁建谷、廖聆岑、周鉦翔、蘇鈴茱、余睿羚、傅安婷、賴雅純、鄭聖樺、張巍鐘(2003)。南區大專院校學生身心健康調查暨高危險群篩選。未發表之論文。
徐西森、連廷嘉(2001)。大專學生網路沉迷行為及其路徑模式之驗證研究。中華輔導學,10,119-149。
高振傑(2003)。反社會性格疾患與藥物依賴男性受刑人在性格特質向度之比較。國立成功大學行為醫學研究所碩士論文。
郭正瑩(2007)。男女大學生網路自我揭露、網路社會支持與寂寞感之差異研究—以即時通訊為例。中國文化大學心理輔導研究所碩士論文。
教育部統計處。2011年5月3日,取自 http://www.edu.tw/statistics/content.aspx?site_content_sn=8956
陳美琴(1999)。Development and validation of the NEO PI-R for a Taiwanese sample, progress in Asian Social Psychology volume Ⅱ, Kyoyook-Kwahak-sa? Publishing Company, 105-118。
陳淑惠、翁儷禎、蘇逸人、吳和懋、楊品鳳(2003)。中文網路成癮量表之編製與心理計量特性研究。中華心理學刊,45,279-294。
郭為藩編著(2003):成人學習---心理學的探討。心理出版社。
張憲庭(2010)。中學生學業成就潛在成長模式之研究。國立臺北市立教育大學教育學系博士班博士論文。
葉美玉、陳雅欣(2007)。原住民青少年飲酒的認知模式-飲酒效果預期與拒酒自我效能的影響。衛生教育學報,27,177-194。
黃堅厚(1999)。人格心理學(第一版)。台北市:心理出版社。
游森期(2001)。大學生網路使用行為、網路成癮及其相關因素之研究。國立彰化師範大學教育研究所碩士論文。
游森期(2001a)。台灣地區大學生及研究生之網路成癮、憂鬱與焦慮之相關研究。民國90年10月24-26日國立中正大學主辦『TANET2001台灣區網際網路研討會暨網路學習與繼續專業教育國際會議』論文宣讀。
資訊工業策進會(2011)。2010年12月底止台灣上網人口。2011年4月24日,取自 http://www.find.org.tw/find/home.aspx?page=many&id=282
劉家儀(2001)。以人際關係論與計畫行為論探討網路交友之現象。國立中山大學資訊管理學系研究所碩士論文。
戴秀津(2003)。高中職學生網路成癮之相關因素及其身心健康影響探討。高雄醫學大學護理學研究所碩士論文。
戴秀津、楊美賞、顏正芳(2004)。台灣南部青少年網路成癮及其對身心健康影響之探討。慈濟醫學,16,241-248。
簡良霖(2006)。大學生之家庭功能與性格對憂鬱症狀的影響。國立成功大學行為醫學研究所碩士論文。

Acton, G. S. (2003). Measurement of impulsivity in a hierarchical model of personality traits: implications for substance use. Substance Use & Misuse, 38, 67-83.
Allport, G. W. (1961). Pattern and Growth in Personality. New York: Holt, Rinehart & Winston.
Amaro, H., Magno-Gatmaytan, C., Meléndez, M., Cortés, D. E., Arevalo, S., & Margolin, A. (2010). Addiction treatment intervention: an uncontrolled prospective pilot study of Spiritual Self-Schema therapy with Latina women. Substance Abuse, 31, 117-125.
American Psychiatric Association (1995). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.
Amichai-Hamburger, Y., Wainapel, G., & Fox, S. (2002). "On the Internet no one knows I'm an introvert": extroversion, neuroticism, and Internet interaction. CyberPsychology & Behavior, 5, 125-128.
Anderson, C. B., Pollak, K. I., & Wetter, D. W. (2002). Relations between self-generated positive and negative expected smoking outcomes and smoking behavior: An exploratory study among adolescents. Psychology of Addictive Behaviors, 16, 196-204.
Anderson, K. E.(2001). Internet use among college student: an exploratory study. Journal of American College Health, 50, 21-26.
Anderson, K. G., Smith, G. T., & Fischer, S. F. (2003). Women and acquired preparedness: personality and learning implications for alcohol use. Journal of Studies on Alcohol, 64, 384-392.
Annis, H. M., & Davis, C. S. (1990). Relapse prevention. Alcohol Health and Research World, 15, 204–212.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Academic of Marketing Science, 16, 76-94.
Balajti, I., Daragó, L., Adány, R., & Kósa, K. (2010). College students' response rate to an incentivized combination of postal and web-based health survey. Evaluation & the Health Professions, 33, 164-176.
Bandura, A. (1976). Social Learning Theory. Prentice Hall; Facsimile edition.
Bandura, A. (1986). Social foundations of thought and action: a social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distiniction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Socail Psychology, 51, 1173-1182.
Barnow, S., Schultz, G., Lucht, M., Ulrich, I., Preuss, U. W., & Freyberger, H. J. (2004). Do alcohol expectancies and peer delinquency/substance use mediate the relationship between impulsivity and drinking behaviour in adolescence? Alcohol and Alcoholism, 39, 213-219.
Barratt, E. S., Stanford, M. S., Kent, T. A., & Felthous, A. (1997). Neuropsychological and cognitive psychophysiological substrates of impulsive aggression. Biological Psychiatry, 41, 1045-1061.
Beard, K. (2005). Internet addiction: A review of current assessment techniques and potential assessment questions. CyberPsychology & Behavior, 8, 7-14.
Bentler, P.M. & Bonett, D.G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606.
Black, D. W., Belsare, G., & Schlosser, S. (1999). Clinical features, psychiatric comorbidity, and health-related quality of life in persons reporting compulsive computer use behavior. Journal of Clinical Psychiatry, 60, 839-843.
Block, J. J. (2008). Issues for DSM-V: internet addiction. The American Journal of Psychiatry, 165, 306-307.
Blonigen, D. M., Timko, C., Moos, B. S., Moos, R. H. (2009). Treatment, alcoholics anonymous, and 16-year changes in impulsivity and legal problems among men and women with alcohol use disorders. Journal of Studies on Alcohol and Drugs, 70, 714-725.
Blume, A. W., Schmaling, K. B., & Marlatt, A. G. (2003). Predictors of change in binge drinking over a 3-month period. Addictive Behaviors, 28, 1007-1012.
Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley
Borman, P. D., Zilberman, M. L., Tavares, H., Surís, A. M., el-Guebaly, N., & Foster, B. (2006). Personality changes in women recovering from substance-related dependence. Journal of Addictive Diseases, 25, 59-66.
Brenner, V. (1997). Psychology of computer use: XLVII. Parameters of Internet use, abuse, and addiction: the first 90 days of the Internet Usage Survey. Psychological Reports, 80, 879-882.
Cao, F., & Su, L. (2007). Internet addiction among Chinese adolescents: prevalence and psychological features. Child: Care, Health and Development, 33, 275-281.
Cao, F., Su, L., Liu, T. O., & Gao, X. (2007). The relationship between impulsivity and Internet addiction in a sample of Chinese adolescents. European Psychiatry, 22, 466-471.
Caplan, S. E. (2002). Problematic Internet use and psychosocial well-being: development of a theory-based cognitive-behavioral measurement instrument. Computers in Human Behavior, 18, 553-575.
Carnes, P. (1983). Out of the shadows: understanding sexual addiction. Minneapolis: CompCare.
Ceyhan, E., Ceyhan, A. A., & Gurvan, A. (2007). The validity and reliability of the problematic Internet usage scale. Educational Sciences: Theory & Practice, 7, 411-416.
Chang, C. H., Ko, H. C., Wu, J. Y., & Cheng, C. P. (2007). Social cognitive determinants of betel quid chewing among college students in southern Taiwan: a revised Attitudes-Social Influence-Efficacy Model. Addictive Behaviors, 32, 2345-2350.
Chang, F. C., Lee, C. M., Lai, H. R., Chiang, J. T., Lee, P. H., & Chen, W. J. (2006). Social influences and self-efficacy as predictors of youth smoking initiation and cessation: a 3-year longitudinal study of vocational high school students in Taiwan. Addiction, 101, 1645-1655.
Chang, M. K., & Law, S. P. M. (2008). Factor structure for Young’s Internet addiction test: a confirmatory study. Computers in Human Behavior, 24, 2597-2619.
Cloninger, C. R. (1987). Neurogenetic adaptive mechanisms in alcoholism. Science, 236(4800), 410-416.
Colzato, L. S., van den Wildenberg, W. P., Van der Does, A. J., & Hommel, B. (2010). Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. Neuroscience, 170, 782-788.
Connors, G. J., O'Farrell, T. J., Cutter, H. S., & Thompson, D. L. (1986). Alcohol expectancies among male alcoholics, problem drinkers and nonproblem drinkers. Alcoholism, Clinical and Experimental Research, 10, 667-671.
Costa, P. T. J., & McCrae, R. R. (1992). Revised NEO Personality Inventory and NEO Five-Factor Inventory. Odessa, FL: Psychological Assessment Resources.
Darkes, J., & Goldman, M. S. (1993). Expectancy challenge and drinking reduction: experimental evidence for a mediational process. Journal of Consulting and Clinical Psychology, 61, 344-353.
Darkes, J., & Goldman, M. S. (1998). Expectancy challenge and drinking reduction: process and structure in the alcohol expectancy network. Experimental and Clinical Psychopharmacology, 6, 64-76.
Davis, R. A., Flett, G. L., & Besser, A. (2002). Validation of a new scale for measuring problematic Internet use: implications for pre-employment screening. CyberPsychology & Behavior, 5, 331-345.
De Vries, H., Dijkstra, M., & Kuhlman, P. (1988). Self-efficacy: the third factor besides attitude and subjective norm as a predictor of behavioural intention. Health Education Research, 3, 273-282.
Demetrovics, Z., Szeredi, B., & Rózsa, S. (2008). The three-factor model of Internet addiction: the development of the Problematic Internet Use Questionnaire. Behavior Research Methods, 40, 563-574.
Dickman, S. J. (1990). Functional and dysfunctional impulsivity: personality and cognitive correlates. Journal of Personality and Social Psychology, 58, 95-102.
DiNicola, M. D. (2004). Pathological Internet use among college students: the prevalence of pathological Internet use and its correlates. Unpublished doctoral dissertation, Ohio University.
Egger, O., & Rauterberg, M. (1996). Internet behavior and addiction. Zurich: Swiss Federal Institute of Technology.
Epstein, J. A., Griffin, K. W., & Botvin, G. J. (2000). Competence skills help deter smoking among inner city adolescents. Tobacco Control, 9, 33-39.
Eysenck, H. J. (1967). The biological basis of personality. Springfield, IL: Thomas.
Finn, P. R., Sharkansky, E. J., Brandt, K. M., & Turcotte, N. (2000). The effects of familial risk, personality, and expectancies on alcohol use and abuse. Journal of Abnormal Psychology, 109, 122-133.
Fu, A. T., Ko, H. C., Wu, J. Y., Cherng, B. L., & Cheng, C. P. (2007). Impulsivity and expectancy in risk for alcohol use: comparing male and female college students in Taiwan. Addictive Behaviors, 32, 1887-1896.
Galen, L. W., Henderson, M. J., & Whitman, R. D. (1997). The utility of novelty seeking, harm avoidance, and expectancy in the prediction of drinking. Addictive Behaviors, 22, 93-106.
Giluk, T. L. (2009). Mindfulness, Big Five personality, and affect: A meta-analysis. Personality and Individual Differences, 47, 805-811.
Glasser, W. (1976). Positive Addictions. New York Harper & Row.
Goldberg, I. (1996). Internet Addiction Disorder (IAD) – Diagnostic criteria. Retrieved March 10, 2011 from http://www-usr.rider.edu/~suler/psycyber/supportgp.html
Goldman, M. S., Brown, S. A., & Christiansen, B. A. (1987). Expectancy Theory: Thinking about Drinking. The Guilford Press. New York.
Goldman, M. S., Brown, S. A., Christiansen, B. A., & Smith, G. T. (1991). Alcoholism and memory: broadening the scope of alcohol-expectancy research. Psychological Bulletin, 110, 137-146.
Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. The American Journal of Psychiatry, 159, 1642-1652.
Griffiths, M. (1990). The cognitive psychology of gambling. Journal of Gambling Studies, 6, 31-42.
Griffiths, M. (2000). Internet addiction – time to be taken seriously? Addiction Research, 8, 413-418.
Gullo, M. J., Dawe, S., Kambouropoulos, N., Staiger, P. K., & Jackson, C. J. (2010). Alcohol expectancies and drinking refusal self-efficacy mediate the association of impulsivity with alcohol misuse. Alcohol, Clinical and Experimental Research, 34, 1386-1399.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data Analysis (5th ed.). London: Prentice-Hall International, Inc.
Han, D. H., Lee, Y. S., Yang, K. C., Kim, E. Y., Lyoo, I. K., & Renshaw, P. F. (2007). Dopamine genes and reward dependence in adolescents with excessive Internet video game play. Journal of Addiction Medicine, 1, 133-138.
Hayaki, J., Herman, D. S., Hagerty, C. E., de Dios, M. A., Anderson, B. J., & Stein, M. D. (2011). Expectancies and self-efficacy mediate the effects of impulsivity on marijuana use outcomes: an application of the acquired preparedness model.Addictive Behaviors, 36, 389-396.
Hays, S. C. (1999). Acceptance and Commitment Therapy: An Experiential Approach to Behavior Change. NY: Guilford.
Heinz, A. J., Kassel, J. D., Berbaum, M., & Mermelstein, R. (2010). Adolescents' expectancies for smoking to regulate affect predict smoking behavior and nicotine dependence over time. Drug and Alcohol Dependence, 111, 128-135.
Henderson, M. J., Goldman, M. S., Coovert, M. D., & Carnevalla, N. (1994). Covariance structure models of expectancy. Journal of Studies on Alcohol, 55, 315-326.
Holden, C. (2001). 'Behavioral' addictions: do they exist? Science, 294(5544), 980-982.
Holden, C. (2010). Behavioral addictions debut in proposed DSM-V. Science, 327(5968), 935.
Hölzel, B. K., Ott, U., Gard, T., Hempel, H., Weygandt, M., Morgen, K., & Vaitl, D. (2008). Investigation of mindfulness meditation practitioners with voxel-based morphometry. Social Cognitive and Affective Neuroscience, 3, 55-61.
Huang, Z., Wang, M., Qian, M., Zhong, J., & Tao, R. (2007). Chinese Internet addiction inventory: developing a measure of problematic Internet use for Chinese college students. CyberPsychology & Behavior, 10, 805-811.
Jacobs, T. L., Epel, E. S., Lin, J., Blackburn, E. H., Wolkowitz, O. M., Bridwell, D. A., Zanesco, A. P., Aichele, S. R., Sahdra, B. K., Maclean, K. A., King, B. G., Shaver, P. R., Rosenberg, E. L., Ferrer, E., Wallace, B. A., & Saron, C. D. (2011). Intensive meditation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology, 36, 664-681.
John, O. P., & Srivastava, S. (1999). The big five trait taxonomy: History, Measurement, and Theoretical Personality. In Pervin, L.A. & John, O.P. (Eds.), Handbook of personality—theory and research (pp.102-138). New York: The Guilford Press.
Kabat-Zinn, J. (1990). Full Catastrophe Living: Using the Wisdom of your Body and Mind to Face Stress, Pain, and Illness. NY: Dell.
Kandell, J. J. (1998). Internet addiction on campus:The vulnerability of college students. CyberPsychology & Behavior, 1, 11-17.
Kear, M. E. (2002). Psychosocial determinants of cigarette smoking among college students. Journal of Community Health Nursing, 19, 245-257.
Keepers, G. A. (1990). Pathological preoccupation with video games. Journal of the American Academy of Child and Adolescent Psychiatry, 29, 49-50.
Khan, M. K. (2007). AMA report on Internet and video game addiction: emotional and behavioral effects, including addictive potential, of video games. Retrieved March 15, 2009 from http://psychcentral.com/blog/images/csaph12a07.pdf
Khantzian, E. J. (1997). The self-medication hypothesis of substance use disorders: a reconsideration and recent applications. Harvard Review of Psychiatry, 4, 231-244.
Kim, S. H., Baik, S. H., Park, C. S., Kim, S. J., Choi, S. W., & Kim, S. E. (2011). Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport, publish ahead of print April 20, 2011.
Ko, C. H., Hsiao, S., Liu, G. C., Yen, J. Y., Yang, M. J., & Yen, C. F. (2010). The characteristics of decision making, potential to take risks, and personality of college students with Internet addiction. Psychiatry Research, 30, 175, 121-125.
Ko, C. H., Liu, G. C., Hsiao, S., Yen, J. Y., Yang, M. J., Lin, W. C., Yen, C. F., & Chen, C. S. (2009). Brain activities associated with gaming urge of online gaming addiction. Journal of Psychiatric Research, 43, 739-747.
Lau-Barraco, C., & Dunn, M. E. (2008). Evaluation of a single-session expectancy challenge intervention to reduce alcohol use among college students. Psychology of Addictive Behaviors, 22, 168-175.
Lee, N. K., Oei, T. P. S., & Greeley, J. D. (1999). The interaction of alcohol expectancies and drinking refusal self-efficacy in high and low risk drinkers. Addiction Research, 7, 91-102.
Lee, N. K., Oei, T. P., Greeley, J. D., & Baglioni, AJ. Jr. (2003). Psychometric properties of the Drinking Expectancy Questionnaire: a review of the factor structure and a proposed new scoring method. Journal of Studies on Alcohol, 64, 432-436.
Lesieur, H. R., & Blume, S. B. (1993). Pathological gambling, eating disorders, and the psychoactive substance use disorders. Journal of Addictive Diseases, 12, 89-102.
Lewis, B. A., & O’Neill, H. K. (2000). Alcohol expectancies and social deficits relating to problem drinking among college students. Addictive Behaviors, 25, 295-299.
Li, S. M., Yu, R. L., Hu, H. C., & Huang, J. S. (2003). Areca quid chewing by Taiwanese adolescents: application of the Attitudes Social Influence Self-efficacy (ASE) model. Addiction, 98, 1723-1729.
Lin, M. P., Ko, H. C., & Wu, J. Y. (2008). The role of positive/negative outcome expectancy and refusal self-efficacy of Internet use on Internet addiction among college students in Taiwan. CyberPsychology & Behavior, 11, 451-457.
Lin, M. P., Ko, H. C., & Wu, Y. W. (2011). Prevalence and psychosocial risk factors associated with Internet addiction in a nationally representative sample of college students in Taiwan. Cyberpsychology, Behavior, and Social Networking, in press.
Linehan, M. M. (1993). Cognitive-behavioral Therapy for Borderline Personality Disorder. New York: Guilford Press.
Liu, T., & Potenza, M. N. (2007). Problematic Internet use: clinical implications. CNS Spectrums, 12, 453-466.
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effect. Psychological Methods, 7, 83-104.
Marlatt, G. A. (1985). Relapse prevention:Theoretical rationale and overview of the model. New York:Guilford Press.
Marlatt, G. A., Baer, J. S., & Quigley, L. A. (1995). Self-efficacy and addictive behavior. In A. Bandura (Ed.), Self-efficacy in changing societies (pp. 289-315). New York: Cambridge University Press.
Marlatt, G. A., & Gordon, J. R. (Eds.). (1985). Relapse prevention: Maintenance strategies in the treatment of addictive behaviors. New York: Guilford.
Marsh, H.W. & Hocevar, D. (1985). Application of confirmatory factor analysis to the study of self-concept: First- and higher-order factor models and their invariance across groups. Psychological Bulletin, 97, 562–582.
Masisito, S.A., Carey, K.B., & Bradizza, C.M. (1999). Social learning theory. New York:Guilford Press.
McCarthy, D. M., Kroll, L. S., & Smith, G. T. (2001a). Integrating disinhibition and learning risk for alcohol use. Experimental and Clinical Psychopharmacology, 9, 389-398.
McCarthy, D. M., Miller, T. L., Smith, G. T., & Smith, J. A. (2001b). Disinhibition and expectancy in risk for alcohol use: comparing black and white college samples. Journal of Studies on Alcohol, 62, 313-321.
McCrae, R. R., & Costa, P. T. J. (1987). Validation of the five-factor model of personality across instruments and observers. Journal of Personality and Social Psychology, 52, 81-90.
McIlwraith, P. L., Jacobvitz, R. S., Kubey, R., & Alexander, A. (1991). Television addiction: theories and data behind the ubiquitous metaphor. American Behavioral Scientist, 35, 104-121.
McKay, J. R., Foltz, C., Stephens, R. C., Leahy, P. J., Crowley, E. M., & Kissin, W. (2005). Predictors of alcohol and crack cocaine use outcomes over a 3-year follow-up in treatment seekers. Journal of Substance Abuse Treatment, 28, 73-82.
Mehroof, M., & Griffiths, M. D. (2010). Online gaming addiction: the role of sensation seeking, self-control, neuroticism, aggression, state anxiety, and trait anxiety. Cyberpsychology, Behavior, and Social Networking, 13, 313-316.
Mitchell, P. (2000). Internet addiction: genuine diagnosis or not? Lancet, 355(9204), 632-632.
Miller, G., & Holden, C. (2010). Proposed revisions to psychiatry's canon unveiled. Science, 327(5967), 770-771.
Morahan-Martin, J., & Schumacher, P. (2000). Incidence and correlates of pathological Internet use among college students. Computers in Human Behavior, 16, 13-29.
Morgan, W. (1979). Negative addiction in runners. Physician and Sportsmedicine, 7, 56-69.
Mottram, A. J., & Fleming, M. J. (2009). Extraversion, impulsivity, and online group membership as predictors of problematic internet use. CyberPsychology & Behavior, 12, 319-321.
Mulder, R. T. (2002). Alcoholism and personality. Australian and New Zealand Journal of Psychiatry, 36, 44-52.
Murali, V., & George, S. (2007). Lost online: an overview of Internet addiction. Advances in Psychiatric Treatment, 13, 24-30.
Nichol, L. A., & Nicki, R. (2004). Development of a psychometrically sound Internet addiction scale: a preliminary step. Psychology of Addictive Behaviors, 18, 381-384.
Oei, T. P. S., & Baldwin, A. R. (1994). Expectancy theory: a two-process model of alcohol use and abuse. Journal of Studies on Alcohol, 55, 525-534.
Oei, T. P. S., & Burrow, T. (2000). Alcohol expectancy and drinking refusal self-efficacy: a test of specificity theory. Addictive Behaviors, 25, 499-507.
Orford, J. (1985). Excessive appetites: a psychological view of the addictions. Chichester: Wiley.
Park, H. S., Kim, S. H., Bang, S. A., Yoon, E. J., Cho, S. S., & Kim, S. E. (2010). Altered regional cerebral glucose metabolism in internet game overusers: a 18Ffluorodeoxyglucose positron emission tomography study. CNS Spectrums, 15, 159-166.
Patterson, C. M., & Newman, J. P. (1993). Reflectivity and learning from aversive events: toward a psychological mechanism for the syndromes of disinhibition. Psychological Review, 100, 716-736.
Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768-774.
Peele, S., & Brodsky, A. (1975). Love and addiction. Scarborough, Ontario: New American Library of Canada.
Peters, C. S., & Malesky, L. A. (2008). Problematic usage among highly-engaged players of massively multiplayer online role playing games. CyberPsychology & Behavior, 11, 481-484.
Pine, A., Shiner, T., Seymour, B., & Dolan, R. J. (2010). Dopamine, time, and impulsivity in humans. Journal of Neuroscience, 30, 8888-8896.
Raylu, N., & Oei, T. P. (2004). The Gambling Related Cognitions Scale (GRCS): development, confirmatory factor validation and psychometric properties. Addiction, 99, 757-769.
Read, J. P., & O'Connor, R. M. (2006). High- and low-dose expectancies as mediators of personality dimensions and alcohol involvement. Journal of Studies on Alcohol, 67, 204-214.
Rice, M. (2005). Online addiction. Beijing Review, 48, 32-33.
Schuckit, M. A., & Smith, T. L. (2001). A comparison of correlates of DSM-IV alcohol abuse or dependence among more than 400 sons of alcoholics and controls. Alcoholism, Clinical and Experimental Research, 25, 1-8.
Schuman, E.(1997). It is official:Net abusers are pathological. Retrieved March 10, 2011 from http://cyberpaths.blogspot.com/2006/08/net-abusers-are-pathological.html
Schwartz, J. M., Stoessel, P. W., Baxter, L. R., Martin, K. M., & Phelps, M.E. (1996). Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive compulsive disorder. Archive of General Psychiatry, 53, 109-113.
Segal, Z. V., Teasdale, J. D. & Williams, J. M. G. (2002). Mindfulness-based cognitive therapy for depression: A new approach to preventing relapse. NY: Guilford.
Settles, R. F., Cyders, M., & Smith, G. T. (2010). Longitudinal validation of the acquired preparedness model of drinking risk. Psychology of Addictive Behaviors, 24, 198-208.
Shapira, N. A., Goldsmith, T. G., Keck, P. E., Jr., Khosla, U. M., & McElroy, S. L. (2000). Psychiatric features of individuals with problematic internet use. Journal of Affective Disorders, 57, 267-272.
Shapira, N. A., Lessig, M. C., Goldsmith, T. D., Szabo, S. T., Lazoritz, M., Gold, M. S., Stein, D. J. (2003). Problematic Internet use: proposed classification and diagnostic criteria. Depression and Anxiety, 17, 207-216.
Shaw, M., & Black, D. W. (2008). Internet addiction: definition, assessment, epidemiology and clinical management. CNS Drugs, 22, 353-365.
Sher, K. J., Trull, T. J., Bartholow, B. D., & Vieth, A. (1999). Personality and alcoholism: issues, methods, and etiological processes. In K. E. Leonard & H. T. Blane (Eds). Psychological Theories of Drinking and Alcoholism. New York: Guilford Press, 54-105.
Sher, K. J., Wood, M. D., Wood, P. K., & Raskin, G. (1996). Alcohol outcome expectancies and alcohol use: a latent variable cross-lagged panel study. Journal of Abnormal Psychology, 105, 561-574.
Shurgot, G. R., & Knight, B. G. (2005). Influence of neuroticism, ethnicity, familism, and social support on perceived burden in dementia caregivers: pilot test of the transactional stress and social support model.Journals of Gerontology. Serial B, Psychology Sciences and Social Sciences, 60, 331-334.
Simon, H. A. (1954). Spurious Correlation: A Causal Interpretation. Journal of the American Statistical Association, 49, 467-479
Skenderian, J. J., Siegel, J. T., Crano, W. D., Alvaro, E. E., & Lac, A. (2008). Expectancy change and adolescents' intentions to use marijuana. Psychology of Addictive Behaviors, 22, 563-569.
Smith, G. T., & Anderson, K. G. (2001). Personality and Learning factors combine to create risk for adolescent problem drinking: a model and suggestions for intervention. In Monti, P. M., Colby, S. M., & O'Leary, T. A. (Eds). Adolescents, alcohol, and substance abuse: reaching teens brief interventions. New York: Guilford Press, 109-141.
Thatcher, A., & Goolam, S. (2005). Development and psychometric properties of the problematic Internet use questionnaire. South African Journal of Psychology, 35, 793-809.
Thompson, M., & Gauntlett-Gilbert, J. (2008). Mindfulness with children and adolescents: effective clinical application. Clinical Child Psychology and Psychiatry, 13, 395-407.
Trucco, E. M., Connery, H. S., Griffin, M. L., Greenfield, S. F. (2007). The relationship of self-esteem and self-efficacy to treatment outcomes of alcohol-dependent men and women. American Journal on Addictions, 16, 85-92.
Tsai, C. C., & Lin, S. S. J. (2003). Analysis of Attitudes toward Computer Networks and Internet Addiction of Taiwanese Adolescents. CyberPsychology & Behavior, 4, 373-376.
Tsai, H. F., Cheng, S. H., Yeh, T. L., Shih, C. C., Chen, K. C., Yang, Y. C., & Yang, Y. K. (2009). The risk factors of Internet addiction--a survey of university freshmen. Psychiatry Research, 167, 294-299.
Urban, R., Kokonyei, G., & Demetrovics, Z. (2008). Alcohol outcome expectancies and drinking motives mediate the association between sensation seeking and alcohol use among adolescents. Addictive Behaviors, 33, 1344-1352.
Van de Luitgaarden, J., Wiers, R. W., Knibbe, R. A., & Candel, M. J. (2007). Single-session expectancy challenge with young heavy drinkers on holiday. Addictive Behaviors, 32, 2865-2878.
Vanderveen, J. W., Cohen, L. M., Trotter, D. R., Collins, F. L. (2008). Impulsivity and the role of smoking-related outcome expectancies among dependent college-aged cigarette smokers. Addictive Behaviors, 33, 1006-1011.
Walton, M. A., Blow, F. C., Bingham, C. R., & Chermack, S. T. (2003). Individual and social/environmental predictors of alcohol and drug use 2 years following substance abuse treatment. Addictive Behaviors, 28, 627-642.
Werner, M. J., Walker, L. S., & Greene, J. W. (1995). Relation of alcohol expectancies to changes in problem drinking among college students. Archives of Pediatrics & Adolescent Medicine, 149, 733-739.
Wetter, D. W., Kenford, S. L., Welsch, S. K., Smith, S. S., Fouladi, R. T., Fiore, M. C., & Baker, T. B. (2004). Prevalence and predictors of transitions in smoking behavior among college students. Health Psychology, 23, 168-177.
Wheaton, B., Muthén, B., Alwin, D.F. & Summers, G.F. (1977). Assessing reliability and stability in panel models. In Heise, D.R. [Ed.] Sociological methodology 1977. San Francisco: Jossey-Bass, 84–136.
Widyanto, L., & McMurran, M. (2004). The psychometric properties of the Internet addiction test. CyberPsychology & Behavior, 7, 443-450.
Wiers, R. W., & Kummeling, R. H. (2004). An experimental test of an alcohol expectancy challenge in mixed gender groups of young heavy drinkers. Addictive Behaviors, 29, 215-220.
Winn, M. (1977). The Plug-In Drug: Television, Computers, and Family Life. New York, NY: Viking Penguin, Inc.
Wyszynski, C. M., Bricker, J. B., & Comstock, B. A. (2011). Parental smoking cessation and child daily smoking: A 9-year longitudinal study of mediation by child cognitions about smoking. Health Psychology, 30, 171-176.
Yeh, Y. C., Ko, H. C., Wu, J. Y., & Cheng, C. P. (2008). Gender differences in relationships of actual and virtual social support to Internet addiction mediated through depressive symptoms among college students in Taiwan. Cyberpsychology & Behavior, 11, 485-487.
Yen, C. F., Ko, C. H., Yen, J. Y., Chang, Y. P., & Cheng, C. P. (2009). Multi-dimensional discriminative factors for Internet addiction among adolescents regarding gender and age. Psychiatry and Clinical Neurosciences, 63, 357-364.
Yen, C. F., Yen, J. Y., & Ko, C. H. (2010). Internet addiction: ongoing research in Asia. World Psychiatry, 9, 97.
Yen, J. Y,, Yen, C. F., Chen, C. S., Tang, T. C., & Ko, C. H. (2009a). The association between adult ADHD symptoms and internet addiction among college students: the gender difference. Cyberpsychology & Behavior, 12, 187-191.
Yen, J. Y., Yen, C. F., Wu, H. Y., Huang, C. J., & Ko, C. H. (2010). Hostility in the Real World and Online: The Effect of Internet Addiction, Depression, and Online Activity. Cyberpsychology, Behavior and Social Networking, April, ahead of print.
Young, K. S.(1996). Psychology of computer use: XL. Addictive use of the internet: a case that breaks the stereotype. Psychological Report, 79, 899-902.
Young, K. S. (1998). Caught in the net: how to recognize the signs of Internet addiction and a winning strategy for recovery. New York: John Wiley & Sons.
Young, K. S. (1998a). Internet addiction: the emergence of a new clinical disorder. CyberPsychology & Behavior, 3, 237-244.
Young, K. S. (2004). Internet addiction: a new clinical phenomenon and its consequences. American Behavior Scientist, 48, 402-415.
Young, K. S., & Case, C. J. (2004). Internet abuse in the workplace: new trends in risk management. CyberPsychology & Behavior, 7, 105-111.
Young, K. S., Pistner, M., O'Mara, J., & Buchanan, J. (1999). Cyber disorders: the mental health concern for the new millennium. CyberPsychology & Behavior, 2, 475-479.
Young, K. S., & Rodgers, R. C. (1998). The relationship between depression and internet addiction. CyberPsychology & Behavior, 1, 25-28.
Young, R. M., & Oei, T. P. S. (2000). The predictive utility of drinking refusal self-efficacy and alcohol expectancy: a diary-based study of tension reduction. Addictive Behaviors, 25, 415-421.
Young, R. M., Oei, T. P. S., & Crook, G. M. (1991). Development of a drinking self-efficacy questionnaire. Journal of Psychopathology and Behavioral Assessment, 13, 1-15.
Yu, R. L., & Ko, H. C. (2006). Cognitive determinants of MDMA use among college students in Southern Taiwan. Addictive Behaviors, 31, 2199-2211.
Zamboanga, B. L., Horton, N. J., Leitkowski, L. K., Wang, S. C. (2006). Do good things come to those who drink? A longitudinal investigation of drinking expectancies and hazardous alcohol use in female college athletes. Journal of Adolescent Health, 39, 229-236.
Zuckerman, M. (1984). Sensation seeking: a comparative approach to a human trait. Behavioral and Brain Sciences, 7, 413-471.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw