進階搜尋


 
系統識別號 U0026-2901201921335200
論文名稱(中文) 通過對行星際磁場中的粒子傳播之研究處理太陽高能粒子在行星際空間中波傳問題
論文名稱(英文) Propagation of Solar Energetic Particles in inter-planetary space by study of the particles spreading across the Interplanetary Magnetic Field
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 107
學期 1
出版年 108
研究生(中文) 方喬丹
研究生(英文) Jordan Vannitsen
學號 P48017010
學位類別 博士
語文別 英文
論文頁數 218頁
口試委員 指導教授-苗君易
共同指導教授-莊智清
共同指導教授-汪愷悌
召集委員-趙怡欽
口試委員-陳炳志
口試委員-蕭富元
口試委員-林俊良
中文關鍵字 太陽高能粒子  太陽粒子事件  霍曼帕克效應  資料分析  同步多衛星量測  立方衛星  火星 
英文關鍵字 solar energetic particle  solar particle event  Hohmann-parker effect  data analysis  simultaneous multi-spacecraft measurements  CubeSat  Mars 
學科別分類
中文摘要 本篇論文主要探討用於多衛星資料分析與模擬之工具(MDAST)。而最初發展此工具是用來協助達成科學任務目標於一顆航向火星之3U立方衛星,其名為BIRDY。首先,此工具(MDAST)之設計與驗證考慮到四個太空船(ACE、MSL、STEREO-A與 STEREO-B)之位置、姿態、酬載之視野(FoV)與高能粒子流之量測等數據。本研究主要聚焦於MSL由地球航向火星之期間(2011年12月6日至2012年7月14日),在巡航期間,可以利用霍曼帕克效應,使一個相同的太陽粒子事件可以被多個沿著相同的太陽圈磁場線之太空船所觀測。而同時之多點量測則有助於瞭解太陽系中的太陽高能粒子之傳播。接著,調整BIRDY立方衛星位置、姿態、酬載之視野(FoV)等模擬資料作為此工具(MDAST)之輸入。
最後,此模擬工具可以用於分析來自前述之四個太空船之感測資料,以便模擬酬載之飛行軌跡以及BIRDY立方衛星之觀測能力。再者,此工具能夠明確地識別太陽粒子事件之起始、峰值、結束之時間。不僅有助於BIRDY任務之運行,還能夠分析前述四個太空船之資料。本研究相信能夠更進一步調整並應用於其他太空天氣任務。
英文摘要 This thesis presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecraft (ACE, MSL, STEREO A, and STEREO B). The focus of this thesis will be in the period 6 December 2011 - 14 July 2012, period during which MSL was cruising from Earth to Mars. In this situation, it is possible to take advantage of the Hohmann Parker effect. One of the asset of this effect is that a same SPE could be observed by different spacecraft aligned along the same heliospheric magnetic field line. In this situation, simultaneous multi-site measurements would be useful in understanding the Solar Energetic Particles propagation in the solar system.
Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input.
And finally, this tool can be used for data analysis of the measurements from the four spacecraft mentioned previously so as to simulate the instrument trajectory and observations capabilities of the BIRDY CubeSat. The onset, peak and end time of a SPE is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.
論文目次 Abstract III
Acknowledgements V
Contents VII
List of Tables XI
List of Figures XII
List of Abbreviations XVII
Chapter 1 Introduction 1
1.1 Context 1
1.2 Objectives 3
1.3 Methodology 4
Chapter 2 Energetic particles in the Solar system 7
2.1 Energetic particles of interest 7
2.1.1 Van Allen Belts 7
2.1.2 Galactic Cosmic Rays 10
2.1.3 Solar particle events 13
2.1.4 Secondary particles 16
2.2 Solar energetic particles propagation and acceleration 17
2.3 The Hohmann-Parker effect 18
Chapter 3 Key satellite data measurements 23
3.1 Advanced Composition Explorer 23
3.1.1 Electron, Proton and Alpha Monitor 24
3.1.2 Solar Isotope Spectrometer 25
3.2 Mars Science Laboratory 27
3.2.1 Radiation Assessment Detector 28
3.3 Solar Terrestrial Relations Observatory A & B 32
3.3.1 High Energy Telescope 33
3.3.2 Low Energy Telescope 34
3.4 Solar Heliospheric Observatory 35
3.4.1 Electron Proton Helium Instrument 36
3.5 Summary of spacecraft/instrument particle measurements 37
Chapter 4 Multi-satellite Data Analysis and Simulator Tool 39
4.1 Introduction 39
4.2 Architecture overview 42
4.2.1 Instruments data loading methods 43
4.2.2 The main launcher function 44
4.3 Inputs 47
4.3.1 Satellite position and attitudes 47
4.3.2 Interplanetary magnetic field 48
4.3.3 Energetic particle flux datasets 51
4.3.4 User analysis settings 51
4.4 Outputs 52
4.4.1 Common reference systems 52
4.4.1.1 Common spatial reference system 52
4.4.1.2 Common temporal reference system 64
4.4.2 Instruments attitude to incoming Parker spirals 80
4.4.2.1 Incoming Parker spiral angle 80
4.4.2.2 Instruments field of view center and incoming Parker spiral angle 80
4.4.3 Solar particle events information 93
4.4.3.1 Key events 93
4.4.3.2 Energetic particle flux variation 94
Chapter 5 Tool applications and results for solar particle events onset, offset and peak time detection 98
5.1 Introduction 98
5.2 Background methods 99
5.2.1 Kubo-Nagatsuma-Akioka method 1A 100
5.2.2 Kubo-Nagatsuma-Akioka method 1B 101
5.2.3 Threshold trigger 101
5.2.4 10% points value increment trigger 102
5.2.5 Stencil trigger 102
5.2.6 Points jumping 103
5.2.7 Energetic level/range crossing 103
5.3 Proposed method 105
5.3.1 Compatible datasets 105
5.3.2 Methodology 107
5.3.3 Tuning 116
5.4 MSL/RAD driven Solar Particle Events detection 126
5.5 Evaluation results 132
Chapter 6 The BIRDY science case 140
6.1 Introduction 140
6.2 Major engineering challenges 140
6.2.1 BIRDY Radiation Payload 140
6.2.2 Navigation 143
6.2.3 Ground segment 146
6.2.4 Communications 147
6.3 Simulation results 149
6.3.1 Inputs 149
6.3.2 Outputs 149
6.4 Proposed science case 152
Chapter 7 Conclusions 154
7.1 Summary 154
7.2 Future Work 155
Chapter 8 References 158
APPENDIXES 164
APPENDIX I: MDAST Table of functions 165
APPENDIX II: MDAST contents description 177
APPENDIX III: Satellite/Instrument position in MDAST 187
APPENDIX IV: Interplanetary Magnetic Field in MDAST 196
APPENDIX V: Additional evaluation results of MDAST 203
APPENDIX VI: Publications 218
參考文獻 A. Rohde, Robert. n.d. "Global warming art project."
A., Posner. 2005. "A high energy telescope for the Solar Orbiter." Advances in Space Research 36: 1426 - 1431.
al., E. B. et. 2007. "Solar energetic particle spectra from the soho ephin sensor by application of regularization methods." Astronomy and Astrophysics 473: 673-682.
al., R. M. et. 2008. "The low-energy telescope (let) and sep central electronics for the stereo mission." Space Science Reviews (136): 285-362.
al., Z. C. et. 2013. "Measurements of energetic particle radiation in transit to mars on the mars science laboratory." Science (340): 1080-1084.
Armstrong, T.P. 2016. The energetic particle radiation hazard en route to and at Mars. Paris: IAA.
n.d. Artifacts in rhessi light curves. https://hesperia.gsfc.nasa.gov/ssw/hessi/doc/guides/.
Atwell, W. 2004. "A space radiation shielding model of the Martian environment experiment (MARIE)." Advances in Space Research 33: 2219 - 2221.
B., Segret. 2014. "BIRDY: an interplanetary CubeSat to collect radiation data on the way to MArs and back to prepare the future manned missions." SPIE.
—. 2018. "In-flight Orbit Determination for a Deep Space CubeSat." IEEE.
Baker, D.N. 2018. "Space Weather Effects in the Earth’s Radiation Belts." Space Science Rev. 214 (17).
Baker, D.N. 2013. "The Relativistic Electron–Proton Telescope (REPT) instrument on Board the Radiation Belt Storm Probes (RBSP) spacecraft: charcharacterization of Earth's radiation belt high-energy particle populations." Space Sci. Rev. 179.
Balasubrahmanyan, V.K. 1974. "1974 Solar energetic particle event with He-3/He-4 greater than 1." Nature 252.
Benton, E.R. 2001. "Space radiation dosimetry in low-Earth orbit and beyond." Method Phys. Res. I: 255-294.
Biermann, P.L. 2011. "On a common origin of galactic and extragalactic cosmic rays." Space and Cosmic Ray Physics Seminar.
Blum, L.W. 2013. "New conjunctive CubeSat and balloon measurements to quantify rapid energy electron precipitation." Geophys. Res. Lett. 40: 5833-5837.
Bochsler, P. 1990. "The abundance of 3He in the solar wind - a constraint for models of solar evolution." Sol. Phys. 128: 203 - 215.
Bohm, E., et al. 2007. Astronomy & Astrophysics 473 (2): 673-682.
Bryant, D.A. n.d. "1962 Explorer 12 observations of solar cosmic rays and energetic storm particles after the solar flare of September 28, 1961." J. Geophys. Res. 67 (16): 4983 - 5000.
Caltech. 2007. Caltech ACE/SIS . http://www.srl.caltech.edu/ACE/CRIS_SIS/sis.html.
—. n.d. STEREO Caltech Website. Caltech. Accessed 2018. http://www.srl.caltech.edu/STEREO/index.html.
Cane, H.V. 2003. "Two components in major solar particle events." Geophys. Res. Lett.
Crew, A.B. 2016. "First multipoint in situ observations of electron microbursts: initial results from the NSF FIREBIRD II mission." J. Geophys. Res. Space Phys. 121 (6): 5272-5283.
D., Hassler. 2013. "RAD Introduction." 15th MSL RAD Team Meeting.
Desai, M.I. 2001. "Acceleration of 3He nuclei at interplanetary shocks." Astrophysics J. 553: 89-92.
Draper, P. 2013. "Current understanding of sep acceleration and propagation." Edited by J. Phys. IOP Publishing Ltd.
Dresing, N. 2012. "The large longitudinal spread of solar energetic particles during the 17 january 2010 solar event." Sol. Phy. .
Ehresmann, B., et al. 2016. Life Sciences in Space Research 10: 29-37.
ESA, NASA -. 2018. Solar and Heliospheric Observatory. https://soho.nascom.nasa.gov/about/about.html.
Feynman, J. 2002. "JPL proton fluence model: an update." J. Atmos. Terr. Phys. 89: 679-686.
Fitzpatrick, R.,. 2006. Introduction to Plasma Physics . University of Texas, Austin, USA: online.
Forbush, S.E. 1946. "Three unusual cosmic-ray increases possibly due to charged particles from the Sun." Phys. Rev. 70.
G. Paschmann, P.W. Daly, et al. 2008. Multispacecraft analysis methods revisited. ISSI Scientific Report.
G., Ulf. 1959. Probability and Statistics: The Harald Cramér Volume.
Galvin, A.B. 2008. "The plasma and suprathermal ion composition investigation on the STEREO observatories ." Space Sci. Rev. 136.
Geiss, J. n.d. "Apollo 11 and 12 solar wind composition experiments: Fluxes of He and Ne isotopes." J. Geophys. Res. 75: 5972-5979.
Gold, R.E., et al. 1998. Space Sci. Rev., 86: 541-562.
Harvey, C.C. and Schwartz, S.J., et al. 2000. ISSI Scientific, 43.
Hassler, D.M., et al. 2012. Space Sci. Rev. 170: 503-558. doi:10.1126/science.1235989.
Hathaway, D. 2017. Solar Cycle Prediction. NASA Marshall Space Flight Center. 03 23. https://solarscience.msfc.nasa.gov/predict.shtml.
Heber, B. n.d. "Modulation of galactic and anomalous cosmic rays in the inner heliosphere." Adv. Space Res. 27: 451-460.
Hörandel, J. R. 2008. "The origin of galactic cosmic rays." Nucl. Instrument. Methods Phys. Res. 588: 181-188.
J., Feynman. 2002. "JPL proton fluence model: an update." Journal of Atmos. Terr. Phys. 64: 679-686.
Jaynes, A.N. 2014. "Evolution of relativistic outer belt electrons during an extended quiescent period." J. Geophys. Res. Space Phys. 119: 9558-9566.
K. Yki, N. Tsutomu, A. Maki. 2009. "Alert and prediction of energetic particles." Journal of NICT (56): 17-31.
K. Yki, N. Tsutomu, A. Maki. 2009. "Alert and prediction of solar energetic particle." Journal of NICT (56): 17-31.
Kaiser, M.L. 2008. "The STEREO Mission." Space Science Rev. 136: 5 - 16.
Klecker, B. 2013. Journal of Physics: Conference Series. doi:10.1088/1742-6596/409/1/012015.
—. 2013. "Current understanding of SEP acceleration and propagation." 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference).
Klein, K-L. 2001. "The origin of solar energetic particle events: coronal acceleration versus shock wave acceleration." Space Sci. Rev. 95: 215 - 225.
Kubo, Y., et al. 2009. Journal of the National Institute of Information and Communications Technology 56 (1.4): 17-31.
Laboratory, Johns Hopkins University Applied Physics. 2015. The EPAM Homepage. http://sd-www.jhuapl.edu/ACE/EPAM/.
Leske, R.A. 1995. "Measurements of the ionic charge states of solar energetic particles using the geomagnetic field." Astrophys. J. Lett. 49-52.
Li, X. 2012. "Colorado student space weather experiment: differential flux measurements of energetic particles in a highly inclined low Earth orbit." In Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere. American Geophysical Union,.
Li, X. 2013. "First results from CSSWE CubeSat: characteristics of relativistic electrons in the near-Earth environment during the October 2012 magnetic storms." J. Geophys. Res. Space Phys. 118 (10): 6489-6499.
Lorentzen, K. R. 2001. "Relativistic electron microbursts during the GEM storms ." Geophys. Res. Lett. 28 (13): 2573-2576.
Luhmann, J.G. 2008. "STEREO IMPACT investigation goals, measurements, and data products overview." Space Sci. Rev. 136: 84 - 117.
Mason, G.M. 1986. "The heavy-ion compositional signature in 3He-rich solar particle events." Astrophys. J. 303: 849-860.
McDonald, F.B. 1964. "Measurement of low-energy primary cosmic-ray protons on the IMP-1 satellite." Physical Review Letters (13): 783.
McGregor, S.L. 2011. "The distribution of solar wind speeds during solar minimum: calibration for numerical solar wind modeling constraints on the source of the slow solar wind." Journal of Geophysical Research 116.
Mewaldt, R.A., et al. 2008. Space Sci. Rev. 136: 285-362.
Modisette, J.L. 1969. "Radiation plan for the Apollo Lunar Mission." AIAA 19-69.
Mrigakshi, A.I. 2012. "Assessment of Galactic Cosmic Ray Models." Journal of Geophys. Res. 33: 2219 - 2221.
Müller-Mellin, R. 1995. "COSTEP – ComprehensiveSuprathermalandEnergeticParticleanalyser ." Solar Physics 162: 483 - 504.
NASA. 2018. Mars Science Laboratory. https://www.nasa.gov/mission_pages/msl/index.html.
—. 2018. NASA Missions. https://www.nasa.gov/directorates/heo/scan/services/missions/solarsystem/STEREO.html.
—. 2018. NASA Photojournal. https://photojournal.jpl.nasa.gov/catalog/PIA14831.
—. n.d. NSSDC NASA. Accessed 2018. http://nssdc.gsfc.nasa.gov/database/MasterCatalog?sc=1997-045A.
—. 2008. STEREO Mission. https://stereo.gsfc.nasa.gov/launch.shtml.
NOAA. n.d. SOLAR ENERGETIC PARTICLES - WMO PRODUCT PORTAL. https://www.swpc.noaa.gov/content/wmo/solar-energetic-particles.
NOAA, Space environment services center. n.d. Solar Proton Events Affecting the Earth Environment - Preliminary listing: 1976 - present. https://umbra.nascom.nasa.gov/SEP/.
Oetliker, M. 1997. "The ionic charge of solar energetic particles with energies of 0.3-70 MeV per nucleon." Astrophysics J. 477: 495-501.
Pallavicini, R. 1977. "A survey of soft X-ray limb flare images - The relation between their structure in the corona and other physical parameters." 216: 108 - 122.
Parker, E.N. 1958. Astrphys. J. 128: 664.
Paschmann, P. W. D. G. 2008. Multi-Spacecraft Analysis Method Revisited.
Posner, A., et al. n.d. "2013." Planetary and Space Science 89: 127-139.
R., Jon. 2008. Space faring - The radiation challenge. NASA.
Reames, D., et al. 2001. AIP Conf. Proc. 1185 - 1190.
Reames, D.V. 1999. "Particle acceleration at the Sun and in the heliosphere." Space Sci. Rev. 90: 413-491.
Ricci, M. 2013. 33nd International Cosmic Ray Conference. Rio de Janeiro, Brazil.
Ruffolo, D. 2002. "Classification of solar energetic particles." Advances in Space Research 45-54. doi:10.1016/S0273-1177(02)00177-1.
Russell. 1998. The advanced composition explorer mission.
Russell, C., et al. 2001. Space Weather: Geophysical Monograph Series 125: 73-89.
Schiller, Q. 2014. "A nonstorm time enhancement of relativistic electrons in the outer radiation belt." Geophys. Res. Lett. 41: 7-12.
Segret, B., et al. 2014. Modeling, Systems Engineering and Project Management for Astronomy VI (SPIE). Montreal.
Selesnick, R.S. 2015. "High-energy radiation belt electrons from CRAND." J. Geophys. Res. 120 (4).
Selesnick, R.S. 2014. "Observations of the inner radiation belt: CRAND and trapped solar protons." J. Geophys. Res. 119.
Simpson, J.A. 1983. "Elemental and isotopic composition of the galactic cosmic rays." Annu. Rev. Nucl. Part. Sci. 323-382.
Spence, H.E. 2012. "Focusing on size and enenergy dependence of electron microbursts from the Van Allen radiation belts." Space weather.
Stone, E.C., et al. 1998. Space Sci. Rev. 86: 357-408.
Summers, D. 2012. "Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere." AGU Monograph 199.
Tito, D. 2013. "Feasibility analysis for a manned Mars free-return mission in 2018." IEEE Aerospace Conference.
Torsti, J., et al. 1995 . Sol. Phys. 162 : 505 .
Turner, S. and Stephens, G., et al. 2010. "RBSP SPICE Workshop." Navigation and Ancillary Information Facility, USA.
University, Kiel. 2008. SOHO COSTEP. http://www.ieap.uni-kiel.de/et/ag-heber/costep/.
Usoskin, I. G. 2001. "Dependence of cosmic rays on solar activity for odd and even solar cycles." Adv. Space Res. 27: 571-576.
Van Allen, J.A. 1964. "Lifetimes of geomagnetically-trapped electrons at several MeV energy." Nature (203): 1006-1007.
Van Allen, J.A. n.d. "Observation of high intensity radiation by satellites." Jet Propuls. 28 (9): 588-592.
Van Allen, J.A. 1959. "Satellite observations of electrons artificially injected into the geomagnetic field." J. Geophys. Res. 64: 877.
Van Allen, J.A. 1966. "Spatial distribution and time decay of the intensities of geomagnetically trapped electrons." In Radiation Trapped in the Earth’s Magnetic Field, 575-592. B.M. McCormac.
von Rosenvinge, T.T. 2008. "The High-Energy telescope for STEREO." Space Science Reviews 136: 319.
von Rosenvinge, T.T., et al. 2008. Space Sci. Rev. 136: 391-435.
Wiedenbeck, M.E. 2011. "Cosmic-ray energy spectra and time variations in the local interstellar medium: Constraints and uncertainties." Space Sci. Rev. .
Wimmer-Schweingruber, R. F. 2015. 46th Lunar and Planetary Science Conference . Texas, USA.
Zwicky, F. 1957. Morphological Astronomy. Berlin: Springer-Verlag.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-02-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw